کاربرد نشانگرهای طیفی لحظه‌ای برای شناسایی کانال‌های نفت‌گیر

نوع مقاله : مقاله پژوهشی

نویسندگان

موسسه ژئوفیزیک دانشگاه تهران

چکیده

نشانگرهای لرزه‌ای ابزار مفیدی در تفسیر پدیده‌های چینه‌شناسی هستند. استفاده از نشانگرهای لرزه‌ای این امکان را فراهم می‌آورد که پدیده‌های زمین‌شناسی که به شکل معمول در مقطع لرزه‌ای قابل مشاهده نیستند را مشاهده کنیم. یکی از این پدیده‌ها کانال‌های مدفون رودخانه‌ای می‌باشد. کانال‌های پر شده توسط سنگ‌های متخلخل که به وسیله یک خمیره ناتراوا محصور شده‌اند، در اکتشافات چینه ای از اهمیت ویژه‌ای برخوردارند. نشانگرهای لرزه‌ای مانند همدوسی که به لبه‌های کانال حساس هستند، نشانگرهای خوبی برای تشخیص عرض کانال‌های نفت‌گیر می‌باشند، اما این نشانگرها به ضخامت کانال‌ها حساس نیستند. در مقابل، نشانگرهای طیفی لحظه‌ای که از روش‌های تجزیه طیفی به دست می‌آیند، با توجه به حساسیتی که به تغییرات ضخامت کانال دارند، می‌توانند در نشان دادن این پدیده به ماکمک کنند. هدف از این تحقیق، بررسی کارایی نشانگرهای طیفی لحظه‌ای حاصل از روش تجزیه طیفی برای تشخیص کانال‌ها می‌با شد. در این تحقیق از داده‌های یکی از میادین نفتی جنوب ایران استفاده شده است. نتایج این مطالعه حاکی از آن است که چگونه نشانگرهای دامنه لحظه‌ای و فرکانس لحظه‌ای که از روش‌های تجزیه طیفی به دست می‌آید، می‌تواند در نشان دادن محدوده کانال به ما کمک کند. همچنین نتایج این تحقیق نشان می‌دهد که با ترکیب تصاویر حاصل از نشانگرهای طیفی لحظه‌ای با نشانگر همدوسی که لبه‌های کانال را به خوبی نمایش می‌دهد، می‌توان یک تصویر ترکیبی مورد استفاده برای نمایش هرچه بهتر و دقیق‌تر کانال تهیه نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Instantaneous Spectral Attributes to Detecting Oil-filled Channels

نویسندگان [English]

  • Reza Mohebian
  • M. Yari
  • Mohammad Ali Riahi
Institute of Geophysics, University of Tehran
چکیده [English]

Seismic attributes are robust tools in the interpretation of stratigraphic phenomena. Use of seismic attributes helps us to detect geological events which normally cannot be revealed in the seismic sections (such as channels). Channels filled with porous rocks and surrounded in a nonporous matrix play an important role in stratigraphic explorations. Although coherence attribute and other edge-sensitive attributes are among the most popular means of mapping channel boundaries, they are relatively insensitive to channel thickness. In contrast, instantaneous spectral attributes obtained using spectral decomposition, due to sensitivity to the variation of channel thickness, can be used to delineate channel thickness. In this paper, we studied the utility of instantaneous spectral attributes extracted from spectral decomposition methods in the detection of channels in one of the southwest Iran oil fields. We first used signal-frequency sections derived by using matching pursuit decomposition (MPD). We then utilized the combination of instantaneous spectral attributes with seismic coherence in order to better reveal channels. The results show that the composite plot of the combination of instantaneous spectral attributes and coherence better illustrate the channel boundaries.

کلیدواژه‌ها [English]

  • Coherency
  • Instantaneous Spectral Attributes
  • Matching-pursuit
  • Spectral Decomposition
  • Channel
[1]. Liu J., Spectral decomposition and its application in mapping stratigraphy and hydrocarbons: thesis, Ph.D., Department of Geosciences, University of Houston, 2006.
[2]. Widess M. B., “How thin is a thin bed?: Geophysics”, 38, pp. 1176–1180, 1973.
[3]. Chuang H., and Lawton D. C., “Frequency characteristics of seismic reflections from thin beds: Canadian Journal of Exploration Geophysics”, 31, pp. 32–37, 1995.
[4]. Stockwell R. G., Mansinha L., and Lowe R. P., “Localization of the complex spectrum: The S-Transform: IEEE Transactions on Signal Processing”, 44, pp. 998-1001, 1996.
[5]. Sinha S., Routh R., Anno P., and Castagna J., “Spectral decomposition of seismic data with continuous-wavelet transform: Geophysics”, 70, pp. 19-25, 2005.
[6]. Mallat S. and Zhang Z., “Matching pursuits with time-frequency dictionaries: IEEE Transactions on Signal Processing”, 41, pp. 3397-3415, 1993.
[7]. Castagna J. P., Sun S. and Siegfrie, R., “Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons: The Leading Edge”, 22, pp. 120-127, 2003.
[8]. Marfurt K. J., and Kirlin R. L., “Narrow-band spectral analysis and thin-bed tuning: Geophysics”, 66, pp. 1274-1283, 2001.
[9]. Wang, Y., Seismic time-frequency spectral decomposition by matching pursuit: Geophysics, 72, V13-V20, 2007.
[10]. Taner M., Koehler F., and Sheriff R., “Complex seismic trace analysis: Geophysics”, 44, pp.1041-1063, 1979.
[11]. Barnes A., “Instantaneous frequency and amplitude at the envelope peak of a constant-phase wavelet: Geophysics”, 56, pp. 1058-1060, 1993.
[12]. Mertins A., Signal analysis: wavelets, filterbanks, time-frequency transforms and applications: John Wiley & Sons, West Sussex, England, 1998.
[13]. Addison P. S., The Illustrated wavelet transform handbook, Institute of physics publishing, Bristol and Philadelphia, 351, 2002.
[14]. Wigner E. P., “On the quantum correction for themodynamic equilibrium”, Phys., Rev., Vol. 40, pp. 749-759, June 1932.
[15]. Morlet J., Arens G., Fourgeau, E. and D. Giard, “Wave propagation and sampling theory: Part I, Complex signal and scattering in multilayered media: Geophysics”, 47, pp. 203–221, 1982.
[16]. Marfurt K. J., Kirlin R. L., Farmer S. L., and Bahorich M. S., “3-D seismic attributes using a running window semblance-based algorithm: Geophysics”, 63, 1150-1165, 1998.