یک مدل پیش‌بینی سایش ذرات جامد درون زانویی استاندارد در جریان چندفازی با الگوی کف‌آلود

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه شهید چمران اهواز، ایران

چکیده

در این مقاله، یک مدل جدید برای پیش‌بینی میزان سایش درون زانویی استاندارد برای الگوی جریانی کف‌آلود توسعه داده شده است. با استفاده از آنالیز ابعادی، گروه‌های بی‌بعد حاکم بر پدیده سایش به‌صورت پارامترهای نسبت سرعت‌های ظاهری گاز به مایع (VSG/VSL)، عدد رینولدز بر حسب خواص میانگین مایع و گاز (Rem)، نسبت قطر ذره به قطر زانویی (dp /D) و پارامتر بی‌بعد سایش (ER ρG D2) استخراج شده‌اند. سپس با استفاده از تکنیک رگرسیون فرآیند گوسی، یک مدل پارامتریک پیش‌بینی میزان سایش بین پارامترهای بی‌بعد برقرار شده است. در مدل ارائه شده، پارامتر بی‌بعد نسبت سرعت‌های ظاهری گاز به مایع به‌عنوان فاکتور انحراف جریان کف‌آلود از خواص میانگین جریان دو فازی و تأثیر آن در میزان سایش لحاظ گردیده است. برای شرایط مختلف سرعت‌های ظاهری مایع و گاز، قطر ذره و ویسکوزیته مایع، نتایج حاصل از مدل با داده‌های تجربی اعتبارسنجی شده است. نتایج نشان می‌دهند بیش از 87% پیش‌بینی‌های حاصل از مدل، خطای کمتر از 30% دارند. همچنین، با مقایسه عملکرد مدل با مدل‌های پیشین موجود، مشاهده شده میزان خطای مدل ارائه شده نسبت به داده‌های تجربی، خیلی کمتر از سایر مدل‌های موجود است. این نتایج دقت و کارآیی مدل ارائه شده در پیش‌بینی میزان سایش برای الگوی جریانی کف‌آلود را نشان می‌دهند. در نهایت، مدل ارائه شده جهت استخراج سرعت‌های مجاز مایع و گاز در الگوی جریانی کف‌آلود بکار گرفته شده است. تأثیر پارامترهای مختلف نظیر اندازه زانویی و ذره، ویسکوزیته مایع و فشار جریان گاز بر میزان سایش و سرعت‌ مجاز سیال در جریان کف‌آلود بررسی و تحلیل شده است.
 

کلیدواژه‌ها


عنوان مقاله [English]

A Correlation for Solid Particle Erosion in Standard Elbow for Churn Flow

نویسندگان [English]

  • Seyed Saied Bahrainian
  • Mehdi Bakhshesh
  • Ebrahim Hajidavalloo
Mechanical Engineering Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

In this paper, a new correlation is developed to predict sand particle erosion in standard elbow for churn flow pattern. Using the Buckingham Pi theorem, dimensional analysis is performed, and the dimensionless groups governing the erosion phenomenon in churn flow are derived. The dimensionless groups include dimensionless erosion, mixture Reynolds number, ratio of the superficial velocities, and the ratio of particle diameter to elbow diameter. Using the Gaussian process regression (GPR), a parametric erosion correlation for churn flow is then constructed. In the proposed model, the ratio of the superficial velocities is considered as the deviation factor of actual properties in churn from the mixture properties and its effect on the predicted erosion rate. For different operating conditions, the model results are validated with experimental data. The results show that more than 83% of the predictions have an error of less than 30%. Also, the model performance is compared with previous existing models. It is observed that the proposed model error is much less than other existing models. These results indicate the accuracy and efficiency of the presented model in solid particle erosion for churn flow. Finally, the proposed model is utilized to obtain the threshold erosional velocity curves in the churn flow pattern. The effect of various parameters such as elbow and particle size, liquid viscosity as well as gas flow pressure on the erosion values and threshold erosional velocity in churn flow are investigated.
 

کلیدواژه‌ها [English]

  • Solid Particle Erosion
  • Standard Elbow
  • Churn Flow
  • Dimensional Analysis
[1]. Shoham O (2006) Mechanistic modeling of gas-liquid two–phase flow in pipes, Society of Petroleum Engineers, SPE, 10-13. ##
[2]. Salama M (2000) An alternative to API 14E erosional velocity limits for sand-laden fluids, ASME Journal of Energy Resources Technology, 122: 71–77. ##
[3]. Jordan K (1998) Erosion in multiphase production of oil and gas, NACE International Annual Conference, USA, San Antonio, 58. ##
[4]. McLaury B, and Shirazi S (2000) An alternate method to API RP 14E for predicting solids erosion in multiphase flow, ASME Journal of Energy Resources Technology, 122: 115-122. ##
[5]. Mazumder Q, Shirazi S, McLaury B, Rybicki E, Shadley J (2005) Development and validation of a mechanistic model to predict solid particle erosion in multiphase flow, Wear, 259: 203-207. ##
[6]. Liu H, Yang W, Kang R (2018) A Correlation for sand erosion prediction in annular flow considering the effect of liquid dynamic viscosity, Wear, 404-405: 1-11. ##
[7]. Shirazi S, McLaury B, and Arabnejad H (2016) A Semi-mechanistic model for predicting sand erosion threshold velocities in gas and multiphase flow production, SPE Annual Technical Conference and Exhibition, Dubai, UAE, SPE-181487-MS. ##
[8]. DNVGL-RP-O501, (2015) Managing sand production and erosion, Edition August 2015, DNV GL AS. ##
[9]. Darihaki F, Hajidavaloo E, Ghasemzadeh A, Safian G (2017) Erosion prediction for slurry flow in choke geometry, Wear, 372-373: 42-53. ##
[10]. Raissi M., (2019) Parametric gaussian process regression for big data, preprint, Computational Mechanics, 64: 409-416. ##
[11]. Zahedi P., Parvandeh S., Asgharpour A., McLaury B.S., Shirazi S.A., McKinney B.A., (2018) Random forest regression prediction of solid particle Erosion in elbows, Journal of Powder Technology, 338: 983–992. ##
[12]. Tran A, Furlan J, Pagalthivarthi K, Visintainer R, Wildey T, Wang Y (2019) WearGP: A computationally efficient machine learning framework for local erosive wear predictions via nodal Gaussian processes, Wear, 422–423: 9–26. ##
[13]. Bahrainian S S, Bakhshesh M, Hajidavalloo E, Parsi M (2021) A novel approach for solid particle erosion prediction based on Gaussian Process Regression, Wear, 466-467 203549. ##
[14]. Rasmussen C, Williams C, (2006) Gaussian Processes for Machine Learning, The MIT Press. ##
[15]. Arabnejad H, (2015) Development of erosion equations for solid particle and liquid droplet impact, Ph.D. Dissertation, Department of Mechanical Engineering, The University of Tulsa, Oklahoma, USA. ##
[16]. Parsi M, Vieira R, Kesana N, McLaury B, Shirazi, S, (2015) Ultrasonic measurements of sand particle erosion in gas dominant multiphase flow, Wear, 328–329: 401–413. ##
[17]. Schulz E, Speekenbrink M, Krause A (2018) A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions, Journal of Mathematical Psychology, 85:1-16. ##
[18]. Rasmussen C, Nickisch H, (2010) Gaussian processes for machine learning (GPML) Toolbox, Journal of Machine Learning Research, 11: 3011-3015. ##
[19]. Parsi M, Kara M, (2016) Comparative study of different erosion predictions for single-phase and multiphase flow conditions, Offshore Technology Conference, Texas, USA, Paper No. OTC-27233-MS. ##
[20]. Azzopardi B J, Kaji R (2010) The effect of pipe diameter on the structure of gas/liquid flow in vertical pipes, International Journal of Multiphase Flow, 36: 303-313. ##