تجزیه فتوکاتالیستی آلاینده نرمال هگزان در فاز گاز با استفاده از نانو ذرات TiO2 بهبود یافته با داپ نیتروژن

نوع مقاله : مقاله پژوهشی

نویسندگان

مرکز تحقیقات کاتالیست، گروه مهندسی شیمی، دانشکده فنی، دانشگاه رازی، کرمانشاه، ایران

چکیده

در این پژوهش گزارشی از اکسیداسیون فتوکاتالیستی نرمال‌هگزان در فاز گاز و تبدیل آن به کربن‌دی‌اکسید و آب با استفاده از فتوکاتالیست TiO2 بهبود یافته با داپ نیتروژن ارائه شده است. خواص فتوکاتالیست و ریخت‎شناسی آن با استفاده از آنالیز‌های XRDا، FTIRا، SEM و XRF مورد بررسی قرار گرفت و محصولات اکسیداسیون فتوکاتالیستی با استفاده از دستگاه گازکروماتوگراف وآنالیز FTIR شناسایی شدند. نتایج آنالیز SEM تغییرات چندانی از سطح کاتالیست در اثر داپ کردن نیتروژن را نشان نمی‌داد و همچنین نتایج عملکرد فتوکاتالستی نشان داد که فتوکاتالیست TiO2 بهبود یافته با داپ نیتروژن در نور مرئی قادر است نرمال‌هگزان خوراک در غلظت‌های مختلف را به کربن‌دی‌اکسید و آب تبدیل کند. تبدیل فتوکاتالیستی نرمال‌هگزان در نور مرئی با استفاده از فتوکاتالیست TiO2 بهبود یافته با داپ نیتروژن در مقایسه با تبدیل فتوکاتالیستی آن با استفاده از فتوکاتالیست خالص TiO2 در نور فرابنفش عملکرد بهتری داشت. واسطه‌هایی مانند الکل، آلدهید، کتون و کربکسیلیک اسید در محصولات توسط آنالیز FTIR شناسایی شدند که مکانیزمی بر پایه این آنالیز برای تولید این واسطه‌ها و محصول نهایی نیز پیشنهاد شده است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Gas-phase Photocatalytic Mineralization of n-Hexane over N-doped TiO2 Nanoparticles under Visible-Light

نویسندگان [English]

  • Maryam Alord
  • Shahram Sharifnia
  • Mona Akbari
Catalyst Research Center, Chemical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, Iran
چکیده [English]

In this paper, an examination of gas-phase photocatalytic oxidation of n-Hexane into CO2 and H2O using nitrogen modified TiO2 under visible-light is reported. The morphology of photocatalyst samples was characterized through XRD, SEM, XRF, and FTIR analyses, also photooxidized products were identified by GC and FTIR in the gas medium. The SEM analysis resulted that the surface of catalysts did not change significantly by modification. Moreover, results from photocatalytic activity showed that the N-doped TiO2 was able to transform different concentrations of feed into CO2 and H2O under visible-light. A comparison between photocatalytic performances of N-doped TiO2/Visible-light and TiO2/UV showed that the former was more efficient for n-Hexane conversion (93% photocatalytic conversion). Based on the results from FTIR analysis that have proved the formation of some intermediates such as alcohols, aldehydes, ketones, and carboxylic acids, a mechanism study has been done.
 

کلیدواژه‌ها [English]

  • Photocatalytic Mineralization
  • n-Hexane
  • TiO2
  • N-doped
  • Mechanism
[1]. Shang J., Du Y. and Xu Z., “Photocatalytic oxidation of heptane in the gas-phase over TiO2,” Chemosphere, Vol. 46, pp. 93-99, 2002. ##
[2]. Wang S., Ang H. M. and Tade M. O., “Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art,” Environ Int., Vol. 33, pp. 694-705, 2007. ##
[3]. Augugliaro V., Coluccia S., Loddo V., Marchese L., Martra G., Palmisano L. and Schiavello M., “Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation,” Appl. Catal. B, Vol. 20, pp. 15-27, 1999. ##
[4]. Rusu A. O. and Dumitriu E., “Destruction of volatile organic compounds by catalytic oxidation,” Environ. Eng. Manag. J., Vol. 2, pp. 273-302, 2003. ##
[5]. Mo J., Zhang Y., Xu Q., Lamson J. J. and Zhao R., “Photocatalytic purification of volatile organic compounds in indoor air: A literature review,” Atmos. Environ., Vol. 43, pp. 2229-2246, 2009. ##
[6]. Gaya U. I. and Abdullah A. H., “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide,” a review of fundamentals, progress and problems, J. Photochem. Photobiol. C., Vol. 9, pp. 1-12, 2008. ##
[7]. Lichtin N. N., Avudaithai M., Berman E. and Grayfer A., “TiO2-photocatalyzed oxidative degradation of binary mixtures of vaporized organic compounds,” Sol. Energy, Vol. 56, No. 5, pp. 377-385, 1996. ##
[8]. Mahmodi G., Sharifnia S., Rahimpour F. and Hosseini S. N., “Photocatalytic conversion of CO2 and CH4 using ZnO coated mesh: effect of operational parameters and optimization,” Sol. Energy Mater. Sol. Cell., Vol. 111, pp. 31-40, 2013. ##
[9]. Hoffmann M. R., Martin S. T., Choi W. Y. and Bahnemann D. W., “Environmental applications of semiconductor photocatalysis,” Chem. Rev., Vol. 95, pp. 69-96, 1995. ##
[10]. Wu C., Yue Y., Deng X., Hua W. and Gao Z., “Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations,” Catal. Today., Vol. 93-95, pp. 863-869, 2004. ##
[11]. Deng X., Yue Y. and Gao Z. “Gas-phase photo-oxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations,” Appl. Catal. B., Vol. 39, pp. 135-147, 2002. ##
[12]. Ding Z., Lu G. Q. and Greenfield P. F., “Role of the Crystallite phase of TiO2 in heterogeneouse photocatalysis for phenol oxidation in water,” J. Phys. Chem. B., Vol. 104, pp. 4815-4820, 2002. ##
[13]. Leong K. H., Monash P., Ibrahim S. and Saravanan P., “Solar photocatalytic activity of anatase TiO2 nanocrystals synthesized by non-hydrolitic sol-gel method,” Sol Energy., Vol. 101, pp. 321-332, 2014. ##
[14]. Shifu C. and Gengyu C., “Photocatalytic detoxification with the thin-film fixed-bed reactor (TFFBR): Clean-up of highly polluted landfill effluents using a novel TiO2-photocatalyst,” Sol Energy., Vol. 79, pp. 1-9, 2005. ##
[15]. Bokare B., Pai M. and Athawale A. A., “Surface modified Nd doped TiO2 nanoparticles as photocatalysts in UV and solar light irradiation,” Sol Energy., Vol. 91, pp. 111-119, 2013. ##
[16]. Khalilian H., Behpour M., Atouf V. and Hosseini S. N., “Immobilization of S, N-codoped TiO2 nanoparticles on glass beads for photocatalytic degradation of methyl orange by fixed bed photoreactor under visible and sunlight irradiation,” Sol Energy., Vol. 112, pp. 239-245, 2015. ##
[17]. Khanna A. and Shetty V. K., “Solar light induced photocatalytic degradation of Reactive Blue 220 (RB-220) dye with highly efficient Ag@TiO2 core-shell nanoparticles: A comparison with UV photocatalysis,” Sol Energy., Vol. 99, pp. 67-76, 2014. ##
[18]. Hamal D. B. and Klabunde K. J., “Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulphur-doped TiO2,” J. Colloid Interf Sci., Vol. 311, pp. 514-522, 2007. ##
[19]. Ko S., Banerjee C. K. and SankarJ., “Photochemical synthesis and photocatalytic activity in simulated solar light of nanosized Ag doped TiO2 nanoparticle composite,” Compos. B., Vol. 42, pp. 579-583. 2011. ##
[20]. Pelaeza M., Nolanb N. T., Pillaib S. C., Seeryc M. K., Falarasd P., Kontosd A.G., Dunlope P. S. M., Hamiltone J. W. J., Byrnee J. A., O’Sheaf K., Entezarig M. H. and Dionysioua D. D., “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B., Vol. 125, pp. 331-349, 2012. ##
[21]. Xiao Q., Zhang J., Xiao C., Si Z. and Tan X., “Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension,” Sol Energy., Vol. 82 No. 8, pp. 706-713, 2008. ##
[22]. Sato S., Nakamura R. and Abe S., “Visible-light sensitization of TiO2 photocatalysts by wet-method N doping,” Appl. Catal. A., Vol. 284, pp. 131-137, 2005.##
[23]. Nosaka Y., Matsushita M., Nishino J. and Nosaka A. Y., “Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds,” Sci. Technol. Adv. Mater., Vol. 6, pp. 143-148, 2005. ##
[24]. Chainarong S., Sikong L., Pavasupree S. and Niyomwas S., “Synthesis and characterization of Nitrogen-doped TiO2 nanomaterials for photocatalytic activities under visible light,” Energy Procedia., Vol. 9, pp. 418-427, 2011. ##
[25]. Moulis F. and Krysa J., “Photocatalytic degradation of several VOCs (n-hexane, n-butyl acetate and toluene) on TiO2 layer in a closed-loop reactor,” Catal. Today, Vol. 209, pp. 153-158, 2013. ##
[26]. Medina-Valtierra J., Moctezuma E., Sanchez-Cardenas M. and Frausto-Reyes C., “Global photonic efficiency for phenol degradation and mineralization in heterogeneous photocatalysis,” J. Photochem. Photobiol A., Vol. 174, pp. 246-252, 2005. ##
[27]. Torabi Merajin M., Sharifnia S., Hosseini S. N. and Yazdanpour N. “Photocatalytic conversion of greenhouse gases (CO2 and CH4) to high value products using TiO2 nano particles supported on stainless steel webnet,” J Taiwan Ins. Chem. Eng., Vol. 44, pp. 239-246, 2013. ##
[28]. Vione D., Minero C., Maurino V., Carlotti ME., Picatonotto T. and Pelizzetti E., “Degradation of phenol and benzoic acid in the presence of a TiO2-based heterogeneous photocatalyst,” Appl. Catal. B., Vol. 58, pp. 79-88, 2005. ##
[29]. Yarahmadi A. and Sharifnia S., “Dye photosensitization of ZnO with metallophthalocyanines (Co, Ni, Cu) in photocatalytic conversion of greenhouse gases,” Dye Pigment., Vol. 107, pp. 140-145, 2014. ##
[30]. Yazdanpour N. and Sharifnia S., “Photocatalytic conversion of greenhouse gases (CO2 and CH4) using copper phthalocyanine modified TiO2,” Sol Energy Mater Sol Cell., Vol. 118, pp. 1-8, 2013. ##
[31]. Zhang Q. H. and Guo J. K., “Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis,” Appl. Catal. B., Vol. 26, pp. 207-215, 2000. ##
[32]. Arana J., Pena Alonso A., Dona Rodriguez J. M., Colon G., Navio J. A. and Perez Pena J., “FTIR study of photocatalytic degradation of 2-propanol in gas phase with different TiO2 catalysts,” Appl. Catal. B., Vol. 89, pp. 204-213, 2009. ##
[33]. Dong Y., Bai Z., Liu R. and Zhu T., “Preparation of fibrous TiO2 photocatalyst and its optimization towards the decomposition of indoor ammonia under illumination,” Catal. Today, Vol. 126, pp. 320-327, 2007. ##
[34]. Shavisi Y., Sharifnia S., Hosseini S. N. and Khadivi M. A., “Application of TiO2 /perlite photocatalysis for degradation of ammonia in wastewater,” J. Ind. Eng. Chem., Vol. 20, pp. 278-283, 2014. ##
[35]. Cheng X., Yu X. and Xing Z., “Chracterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity,” Appl. Surf. Sci., Vol. 258, pp. 3244-3248, 2012. ##
[36]. Bu X Z., Zhang G K., Gao Y Y. and Yang Y Q., “Preparation and photocatalytic properties of visible light responsive N-doped TiO2 /rectorite composites,” Micropor Mesopor Mater., Vol. 136, pp. 132-137, 2010. ##
[37]. Lin Y. H., Chiu T. C., Hsueh H. T. and Chu H., “N-doped TiO2 photo-catalyst for degradation of 1, 2-dichloroethane under fluorescent light,” Appl. Surf. Sci., Vol. 258, pp. 1581-1586, 2011. ##
[38]. Augugliaro V., Bellardita M., Loddo V., Palmisano G., Palmisano L. and Yurdakal S., “Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis,” J. Photochem Photobiol C., Vol. 13, pp. 224-245, 2012. ##
[39]. Fujishima A., Zhang X. and Tryk D. A., “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep., Vol. 63, pp. 515-582, 2008. ##
[40]. Shang J., Du Y. and Xu Z., “Photocatalytic oxidation of heptane in the gas-phase over TiO2,” Chemosphere, Vol. 46, pp. 93-99, 2002. ##
[41]. Yu P. K., Lee G. W. M., Huang W. M., Wu C. and Yang S., “The correlation between photocatalytic oxidation performance and chemical/physical properties of indoor volatile organic compounds,” Atmos. Environ., Vol. 40, pp. 375-385, 2006. ##