تهیه غشاهای شبکه‌آمیخته حاوی پلی‌اتر بلاک آمید و نانوذرات نقره به‌منظور بررسی تراوایی گازهای دی‌اکسیدکربن، نیتروژن و متان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه تربیت مدرس، تهران، ایران

2 گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه اراک، ایران

چکیده

در میان انواع مختلف پلی‌اتر بلاک آمیدها، پباکس1657 خواص جداسازی بسیار مناسبی را برای گازهای قطبی یا میعان‌پذیر مانند دی‌اکسید‌کربن نسبت به سایر گازهای سبک از خود نشان می‌دهد. در این پژوهش از پلیمر پباکس1657 به‌عنوان فاز آلی و نانوذرات نقره به‌عنوان فاز معدنی، به‌منظور ساخت غشاهای شبکه آمیخته استفاده شد. نانوذرات نقره به‌عنوان پرکن ازیک‌طرف می‌تواند در زنجیره‌های پلیمری وارد شده و با افزایش حجم آزاد جزئی غشاها، تراوایی گاز را ارتقا بخشد. از طرف دیگر نانوذرات نقره که در کنار بخش غنی از الکترون زنجیره پلی‌اتیلن اکساید در کوپلیمر، به‌طور نسبی باردار شده‌اند، می‌تواند میل جذب غشاها را نسبت به گاز دی‌اکسید‌کربن افزایش دهد، که خود باعث افزایش نفوذپذیری گاز دی‌اکسید‌کربن نسبت به گازهای سبک در غشاهای شبکه آمیخته می‌گردد. تراوایی و گزینش‌پذیری غشاها در دما و فشارهای عملیاتی مختلف مورد بررسی قرار گرفت. همچنین غشاها توسط آنالیزهای FTIR ،SEM و XRD مشخصه‌سازی شدند. نتایج آنالیزهای انجام‌شده نشان داد که نانوذرات نقره بخش بلوری غشا را کاهش داده و با زنجیره آمورف کوپلیمر برهمکنش داشته، که هردو عامل می‌توانند باعث ارتقای ویژگی‌های انتقالی گازهای قطبی گردند. همچنین نتایج آزمایش‌های تراوایی گاز، افزایش چشمگیری در تراوایی و گزینش‌پذیری در دمای C° 35 و فشار bar 10 را نشان داد. در غشای بهینه در مقایسه با غشای خالص، گزینش‌پذیری CO2/CH4 و CO2/N2 به ترتیب حدود 112 و 76% افزایش یافت. از طرفی افزایش حجم آزاد جزئی در شبکه پلیمری خالص، تراوایی گاز دی‌اکسید‌کربن را تا 141% افزایش داد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Preparation of Mixed Matrix Membranes Containing Polyether Block Amide and Silver Nanoparticles to Evaluate the Permeability of CO2, N2, and CH4 Gases

نویسندگان [English]

  • Ehsan Ghasemi Estahbanati 1
  • Mohammadreza Omidkhah 1
  • Abtin Ebadi Amooghin 2
1 Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
2 Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
چکیده [English]

Among the various types of Poly (ether block amides), Pebax1657 shows excellent separation properties for polar or condensable gases such as carbon dioxide in comparison with other light gases. In this research, Pebax1657 as an organic phase and silver nanoparticles as an inorganic phase were considered for preparation of mixed matrix membranes. Moreover, in one side, silver nanoparticles as fillers could enter the polymer chains and enhance the gas permeability by increasing the fractional free volume of membranes. On the other side, partially positively polarized silver nanoparticles beside electron rich parts of PEO segment of the copolymer could increase the CO2 affinity of membranes, which results in increasing the permselectivity of the MMMs for CO2 over CH4 and N2. Also, permeability and selectivity of membranes were studied at different operating temperature and pressures. Moreover, (fabricated) membranes were characterized by FTIR, SEM, and XRD analyses. Obtained results revealed that Ag nanoparticles have decreased the membrane crystallinity and interacted with soft segment of the copolymer, which could enhance transport properties of the polar gases. In addition, the results of gas permeation have shown excellent improvement in permeability and selectivity at temperature of 35 °C and pressure of 10 bar. For the optimum membrane in comparison with the neat one, CO2/CH4 and CO2/N2 selectivities have increased about 112 about 76 % respectively. On the other hand, an increase in the fractional free volume of the neat polymeric matrix has caused to enhance the CO2 permeability up to 141 %.
 

کلیدواژه‌ها [English]

  • Mixed Matrix Membranes
  • CO2 Permeability
  • Pebax1657 Copolymer
  • Silver Nanoparticles
  • Selectivity
[1]. Pedram M. Z.,Omidkhah M., Amooghin A. E.,Yegani R. and Moghaddam F., “DEA-impregnated cross-linked polyvinyl alcohol/glutaraldehyde polymeric systems as CO2 /CH4 gas separation membranes,” Iranian Journal of Polymer Science and Technology., Vol. 25, pp. 89-477, 2013.##
[2]. Amooghin A. E., Sanaeepur H.,Moghadassi A., Kargari A.,Ghanbari D. and Mehrabadi Z. S., “Modification of ABS membrane by PEG for capturing carbon dioxide from CO2 /N2 streams,” Separation Science and Technology., Vol. 45, pp. 1385-1394, 2010.##
[3]. Khalilinejad I., Kargari A. and Sanaeepur H., “Preparation of ethylene vinyl Acetate/Zeolite 4A mixed matrix membrane for CO2 /N2 separation,” Iranian Journal of Polymer Science and Technology., Vol. 29, pp. 47-231, 2016.##
[4]. Abedini R., Omidkhah M. and Dorosti F., “CO2 /CH4 Separation by a mixed matrix membrane of polymethylpentyne/MIL-53 particles,” Iranian Journal of Polymer Science and Technology, Vol. 27, pp. 37-351, 2014. ##
[5]. Amooghin A. E., Omidkhah M. and KargariA., “Enhanced CO2 transport properties of membranes by embedding nano-porous zeolite particles into Matrimid® 5218 matrix,” RSC Advances., Vol. 5, pp. 8552-8565, 2015.##
[6] Bondar V.,Freeman B. and Pinnau I., “Gas sorption and characterization of poly (etherbamide) segmented block copolymers,” Journal of Polymer Science, Part B: Polymer Physics., Vol. 37, pp. 2463-2475, 1999.##
[7]. Ghadimi A., Amirilargani M., Mohammadi T., Kasiri N. and Sadatnia B., “Preparation of alloyed poly (ether block amide)/poly (ethylene glycol diacrylate) membranes for separation of CO2 /H2 (syngas application),” Journal of Membrane Science., Vol. 458, pp. 14-26, 2014. ##
[8]. Rabiee H., Alsadat S. M., Soltanieh M., Mousavi S. A. and GhadimiA., “Gas permeation and sorption properties of poly (amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2 /CH4 and CO2/N2 separation,” Journal of Industrial and Engineering Chemistry., Vol. 27, pp. 223-239, 2015.##
[9]. Zarshenas K., RaisiA. and AroujalianA., “Mixed matrix membrane of nano-zeolite NaX/poly (ether-block-amide) for gas separation applications,” Journal of Membrane Science., Vol. 510, pp. 270-283, 2016.##
[10]. Powell C. E. and Qiao G. G., “Polymeric CO2 /N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases,” Journal of Membrane Science., Vol. 279, pp. 1-49, 2006.##
[11]. Ren X., Ren J., Li H., Feng S. and Deng M., “Poly (amide-6-b-ethylene oxide) multilayer composite membrane for carbon dioxide separation,” International Journal of Greenhouse Gas Control., Vol. 8, pp. 111-120, 2012.##
[12]Kim J. H., Ha S. Y. and Lee Y. M., “Gas permeation of poly (amide-6-b-ethylene oxide) copolymer,” Journal of Membrane Science, Vol. 190, pp. 179-193, 2001.##
[13]. Ghasemi Estahbanati E., Omidkhah M. and Ebadi Amooghin A., “Interfacial design of ternary mixed matrix membranes containing pebax 1657/silver-nanopowder/[BMIM][BF4] for improved CO2 separation performance,” ACS Applied Materials & Interfaces., Vol. 9, pp. 10094-10105, 2017.##
[14]. Bondar V., FreemanB. and Pinnau I., “Gas transport properties of poly (etherbamide) segmented block copolymers,” Journal of Polymer Science Part B: Polymer Physics., Vol. 38, pp. 2051-2062, 2000.##
[15]. Murali R. S., Rani K. Y., Sankarshana T., Ismail A. and Sridhar S., “Separation of binary mixtures of propylene and propane by facilitated transport through silver incorporated poly (ether-block-amide) membranes,” Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, Vol. 70, pp. 381-390, 2015.##
[16]. Rajabi Z.,Taremi F A., Kargari A. and Sanaeepur H., “CO2 /N2 gas separation using nanocomposite membranes comprised of ethylene-propylene-diene monomer/multi-walled carbon nanotube (EPDM/MWCNT),” Iranian Journal of Polymer Science and Technology., Vol. 28, pp. 11-224, 2015.##
[17]. Sanaeepur H., Amooghin A. E., Moghaddasi A., Kargari A., Ghanbari D., Mehrabadi Z. S. and Nademi M., “CO2 /CH4 separation via polymeric blend membrane,” Iranian Journal of Polymer Science and Technology., Vol. 23, 17-28, 2013.##
[18]. Loloei M., Moghadassi A., Omidkhah M. and Amooghin A. E., “Improved CO2 separation performance of Matrimid® 5218 membrane by addition of low molecular weight polyethylene glycol,” Greenhouse Gases: Science and Technology., Vol. 5, pp. 530-544, 2015.##
[19]. Amooghin A. E., Pedram M. Z., Omidkhah M. and Yegani R., “A novel CO2selective synthesized amineimpregnated crosslinked polyvinylalcohol/glutaraldehyde membrane: fabrication, characterization, and gas permeation study,” Greenhouse Gases: Science and Technology., Vol. 3, pp. 378-391, 2013.##
[20]. Kang S. W., Lee D. H., Park J. H., Char K., Kim J. H., Won J. and Kang Y. S., “Effect of the polarity of silver nanoparticles induced by ionic liquids on facilitated transport for the separation of propylene/propane mixtures,” Journal of Membrane Science., Vol. 322, pp. 281-285, 2008.##
[21]. Wang Y., Ren J. and Deng M., “Ultrathin solid polymer electrolyte PEI/Pebax2533/AgBF4 composite membrane for propylene/propane separation,” Separation and Purification Technology., Vol. 77, pp. 46-52, 2011.##
[22]. Sanaeepur H., Kargari A., Nasernejad B., Amooghin A. E. and Omidkhah M., “A novel Co2+ exchanged zeolite Y/cellulose acetate mixed matrix membrane for CO2 /N2 separation,” Journal of the Taiwan Institute of Chemical Engineers, Vol. 60, pp. 403-413, 2016.##
[23]. Sridhar S., Aminabhavi T., Mayor S. and Ramakrishna M., “Permeation of carbon dioxide and methane gases through novel silver-incorporated thin film composite pebax membranes,” Industrial & Engineering Chemistry Research., Vol. 46, pp. 8144-8151, 2007.##
[24]. Amooghin A. E., Omidkhah M., Sanaeepur H. and Kargari A., “Preparation and characterization of Ag+ ion-exchanged zeolite-Matrimid® 5218 mixed matrix membrane for CO2 /CH4 separation,” Journal of Energy Chemistry., Vol. 25, pp. 450-462, 2016. ##
[25]. Barsema J. N., van der Vegt N. F., Koops GH. and Wessling M., “Agfunctionalized carbon molecularsieve membranes based on polyelectrolyte/polyimide blend precursors,” Advanced Functional Materials., Vol. 15, pp. 69-75, 2005.##
[26]. Nour M., Berean K., Chrimes A., Zoolfakar A. S., Latham K., McS weeney C., Field M. R., Sriram S., Kalantar zadehK. and Ou J. Z., “Silver nanoparticle/PDMS nanocomposite catalytic membranes for H2 S gas removal,” Journal of Membrane Science, Vol. 470, pp. 346-355, 2014.##
[27]. Kang S. W. and Kang Y. S., “Silver nanoparticles stabilized by crosslinked poly (vinyl pyrrolidone) and its application for facilitated olefin transport,” Journal of Colloid and Interface Science., Vol. 353, pp. 83-86, 2011.##
[28]. Cong H., Radosz M., Towler B. F. and ShenY., “Polymer–inorganic nanocomposite membranes for gas separation,” Separation and Purification Technology., Vol. 55, pp. 281-291, 2007.##
[29]. Estahbanati E. G., Omidkhah M. and Amooghin A. E., “Preparation and characterization of novel Ionic liquid/pebax membranes for efficient CO2 /light gases separation,” Journal of Industrial and Engineering Chemistry., Vol. 51, pp. 77-89, 2017. ##
[30]. Rabiee H., Soltanieh M., Mousavi S. and Ghadimi A., “Improvement in CO2 /H2 separation by fabrication of poly (ether-b-amide6)/glycerol triacetate gel membranes,” Journal of Membrane Science., Vol. 469, pp. 43-58, 2014.##
[31]. Sridhar S.,Suryamurali R., Smitha B. and Aminabhavi T., “Development of crosslinked poly (ether-block-amide) membrane for CO2 /CH4 separation,” Colloids and Surfaces A: Physicochemical and Engineering Aspects., Vol. 297, pp. 267-274, 2007.##
[32]. Chowdhury A. and ThynellS T., “Confined rapid thermolysis/FTIR/ToF studies of imidazolium-based ionic liquids,” Thermochimica Acta, Vol. 443, pp. 159-172., 2006. ##
[33]. Griffiths P. R. and De Haseth J. A., “Fourier transform infrared spectrometry,” John Wiley & Sons; Vol. 171, 2007. ##
[34]. Socrates G., “Infrared and Raman characteristic group frequencies: tables and charts,” John Wiley & Sons: 2004. ##
[35]. Roeges N. P., “A guide to the complete interpretation of infrared spectra of organic structures,” Wiley: 1994. ##
[36]. Murali R. S., Ismail A. F., Rahman M. A. and Sridhar S., “Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations,” Separation and Purification Technology., Vol. 129, pp. 1-8, 2014. olefin/paraffin mixtures with carrier facilitated membrane final report,” Membrane Technology and Research, Inc., Menlo Park, CA: 2007. ##
[38]. Rabiee H., Ghadimi A. and Mohammadi T., “Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim][BF4] gel membranes for CO2 /light gases separation” Journal of Membrane Science., Vol. 476, pp. 286-302, 2015.##
[39]. Murali R. S., Kumar K. P., Ismail A. and Sridhar S., “Nanosilica and H-mordenite incorporated Poly (ether-block-amide)-1657 membranes for gaseous separations,” Microporous and Mesoporous Materials., Vol. 197, pp. 291-298, 2014.##
[40]. Murali R. S., Sridhar S., Sankarshana T. and RavikumarY., “Gas permeation behavior of pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes,” Industrial & Engineering Chemistry Research., Vol. 49, pp. 6530-6538, 2010.##
[41]. Shankar S. S., Rai A., Ahmad A. and Sastry M., “Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth,” Journal of Colloid and Interface Science, Vol. 275, pp. 496-502, 2004.##
[42]. Bar H., Bhui D. K., Sahoo G. P., Sarkar P., DeSP. and Misra A., “Green synthesis of silver nanoparticles using latex of Jatropha curcas,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 339, pp. 134-139, 2009.
[43]. Gray F.M., “Solid polymer electrolytes,” VCH New Tork etc.:1991. ##
[44]. Mac Callum J. and Vincent C., “Polymer electrolyte reviews,” Elsevier Applied Science, New York, 1987. ##
[45]. Sunderrajan S., Freeman B., Hall C. and Pinnau I., “Propane and propylene sorption in solid polymer electrolytes based on poly (ethylene oxide) and silver salts,” Journal of Membrane Science, Vol. 182, pp.1-12, 2001. ##
[46]. Amooghin A. E., Omidkhah M. and Kargari A., “The effects of aminosilane grafting on NaY zeolite–Matrimid® 5218 mixed matrix membranes for CO2 /CH4 separation,” Journal of Membrane Science, Vol. 490, pp. 364-379, 2015. ##
[47]. Rezakazemi M., Amooghin A. E., Montazer Rahmati M. M., Ismail A. F. and Matsuura T., “State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs):an overview on current status and future directions,” Progress in Polymer Science, Vol. 39, pp. 817-861, 2014.##
[48]. Pedram M. Z., Omidkhah M. and Amooghin A. E., “Synthesis and characterization of diethanolamine-impregnated cross-linked polyvinylalcohol/glutaraldehyde membranes for CO2 /CH4 separation,” Journal of Industrial and Engineering Chemistry, Vol. 20, pp. 74-82, 2014. ##
[49]. Loloei M., Omidkhah M., Moghadassi A. and AmooghinA. E., “Preparation and characterization of Matrimid® 5218 based binary and ternary mixed matrix membranes for CO2 separation,” International Journal of Greenhouse Gas Control, Vol. 39, pp. 225-235, 2015.##
[50]. Robeson L. M., “The upper bound revisited,” Journal of Membrane Science, Vol. 320, pp. 390-400, 2008.##