مقایسه مدل‌های HK، اDA و DS در تعیین توزیع اندازه حفرات جاذب‌های کربنی ریز حفره با استفاده از جذب دی اکسید کربن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه کاشان، دانشکده مهندسی شیمی، گروه مهندسی

2 پژوهشگاه صنعت نفت، پژوهشکده گاز

چکیده

در این مقاله، ایزوترم جذب دی اکسید کربن در دمای K 273 بر روی پنج جاذب کربنی تجاری، به روش حجمی اندازه‌گیری شده است. در ادامه به کمک داده‌های تعادلی جذب، توزیع اندازه حفرات این جاذب‌ها، با سه مدل DS، DA و HK تعیین و مقایسه شده است. نتایج نشان می‌دهد، هر چند متوسط قطر حفرات به‌دست آمده از این مدل‌ها، تقریباً یکسان است ولی این مدل‌ها توزیع اندازه حفرات متفاوتی را ارائه می‌کنند. در ادامه نتایج حاصل از آنالیز عکس‌های HRTEM یکی از نمونه‌ها با نتایج مدل‌های مذکور، مقایسه شده است. نتایج نشان می‌دهد که میزان خطای متوسط برای مدل‌های DA، HK و DS به‌ترتیب برابر 04/2، 73/2 و 42/1 می‌باشد. بنابراین مدل DS به‌عنوان مدل برتر جهت تعیین توزیع اندازه حفرات معرفی می‌شود و مدل DA از نظر دقت پیش‌بینی، در رتبه آخر قرار می‌گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of DA, DS and HK Models in Determination of Pore Size Distribution of Microporous Carbon Adsorbents Using CO2 Adsorption

نویسندگان [English]

  • A. Aleghafouri 1
  • M. Mahdyarfar 2
  • A. Mohajeri 2
  • M. Mohsen Nia 1
  • M. Asghari 1
1 Department‌ of Chemical Engineering, Engineering Department, Kashan University
2 Gas Research Institute, IRPI
چکیده [English]

In this paper, CO2 adsorption isotherms at 273 K are measured on five commercial carbonaceous adsorbents using volumetric method and their pore size distributions are determined and compared using DA, DS and HK models. The results show that although the average pore diameter obtained from these models are almost the same, these models show different pore size distributions. Then obtained results from HRTEM images of one of samples and these model results are compared. The results also show that the average error for HK, DA and DS models are 2.04, 2.73 and 1.42, respectively. Thus, DS model is introduced as the best model for determination of pore size distribution, and DA model gets the third rank.

منابع
[1] Bansal R.C. & Goyal M., Activated carbon adsorption, Taylor & Francis Group, 2005.
[2] Frère M, De Weireld G & Jadot R., “Characterization of porous carbonaceous sorbents using high pressure CO2 adsorption data”, J Porous Mater, Vol. 5, No. 3-4, pp.275-287, 1998.
[3] Marsh H & Rodriguez-Reinoso F. Activated Carbon, Elsevier Science & Technology Books, 2006.
[4] Rege S U & Yang R T, in Tóth J (ed.). Adsorption, Theory, Modeling, and Analysis, Marcel Dekker, Inc., 2002.
[5]. Marsh H. & Wynne-Jones W.T.K., “The surface properties of carbon-I the effect of activated diffusion in the determination of surface area”, Carbon, Vol. 1, No. 3, pp. 269-279, 1964.
[6]. Debelak K.A. & Schrodt J.T., “Comparison of pore structure in Kentucky coals by mercury penetration and carbon dioxide adsorption”, Fuel, Vol. 58, No. 10, pp. 732-736, 1979.
[7]. Rodriguez-Reinoso F., Lbpez-Gonzalez J.D. & Berenguer C., “Activated carbons from almond shells-I: Preparation and characterization by nitrogen adsorption”, Carbon, Vol. 20, No. 6, pp. 513-518, 1982.
[8] Rodriguez-Reinoso F., Martin-Martinez J.M., Molina-Sabio M., PBrez-Lledb I. & Prado-Burguete C., “A comparison of the porous texture of two CO2 activated botanic materials”, Vol. 23, No. 1, pp. 19-24, 1985.
[9] Rodriguez-Reinoso F., Rodriguez-Ramos I., Moreno-Castilla C., Guerrero-Ruiz A. & Ldpez-Gonzdez J.D., “Platinum catalysts supported on activated carbons: I. Preparation and characterization”, J. Catal., Vol. 99, No. 1, pp. 171-183, 1986.
[10] Cazorla-Amoros D., Alcaiz-Monge J., de la Casa-Lillo M.A. & Linares-Solano A., “CO2 as an adsorptive to characterize carbon molecular sieves and activated carbons”, Langmuir, Vol. 14, No. 16, pp. 4589-4596, 1998.
[11] Garrido J., Linares-Solano A., Martin-Martinez J.M., Molina-Sabio M., Rodriguez-Reinoso F. & Torregrosa R., “Use of nitrogen vs. carbon dioxide in the characterization of activated carbons”, Langmuir, Vol. 3, No. 1, pp. 76-81, 1987.
[12] Cazorla-Amors D., Alcaiz-Monge J. & Linares-Solano A., “Characterization of activated carbon fibers by CO2 adsorption”, Langmuir, Vol. 12, No. 11, pp. 2820-2824, 1996.
[13] Lozano-Castello D., Cazorla-Amoros D. & Linares-Solano A., “Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons”, Carbon, Vol. 42, , No. 7, pp. 1233-1242, 2004.
[14] Konstantakou M., Steriotis Th.A., Papadopoulos G.K., Kainourgiakis M., Kikkinides E.S., Stubos A.K., “Characterization of nanoporous carbons by combining CO2 and H2 sorption data with the Monte Carlo simulations”, Appl. Surf. Sci., Vol. 253, No. 13, pp. 5715-5720, 2007.
[15] Jagiello J. & Thommes M., “Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions”, Carbon, Vol. 42, No. 7, pp. 1227-1232, 2004.
[16]. Russel B.P., LeVan M.D., “Pore size distribution of BPL activated carbon determined by different methods”, Carbon, Vol. 32, No. 5, pp. 845-855, 1994.
[17] Valladares D.L., Rodriguez-Reinoso F. & Zgrablich G., “Characterization of active carbons: the influence of the method in the determination of the pore size distribution”, Carbon, Vol. 36, No. 10, pp. 1491-1499, 1998.
[18] Stoeckli F., Guillot A., Cleary D.H., Slasli A.M., “Pore size distributions of active carbons assessed by different [19] Jaroniec M. & Madey R., Physical Adsorption on Heterogeneous Solid, Elsevier, 1988.
[20] Trznadel B.J., Zietek S. & Swiatkowski A., “Validation of the reliability of the porous structure parameters for activated carbons as evaluated on the basis of adsorption isotherms from the gaseous phase”, Ads. Sci. Tech., Vol. 17, No. 1, pp. 11-24, 1999.
[21] Ryu Z., Zheng J. & Wang M., “Porous structure of pan-based activated carbon fibers”, Carbon, Vol. 36, No. 4, pp. 427-432, 1998.
[22] Do D.D., Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, 1998.
[23] Borghard W.S., Sheppard E.W. & Schoennagel H. J., “An automated, high precision unit for low-pressure physisorption”, Rev. Sci. Instrum., Vol. 62, No. 11, pp. 2801 – 2809, 1991.
[24] Gill A. & Grange P., “Comparison of the microporous properties of an alumina pillared montmorillonite and an activated carbon from nitrogen adsorption at 77 K”, Langmuir, Vol. 13, pp. 4483-4486, 1997.
[25] Kruk M., Jaroniec M. & Choma J., “Critical discussion of simple adsorption methods used to evaluate the micropore size distribution”, Adsorption, Vol. 3, No. 3, pp. 209-219, 1997.
[26] Horvath G., Kawazoe K., “Method for calculation of effective pore size distribution in molecular sieve carbon”, J. Chem. Eng. Japan, Vol. 16, No. 6, pp. 470-475, 1983.
[27] Dubinin M.M., Radushkevich L.V., “The equation of the characteristic curve of activated charcoal”, Dokl. Akad. Nauk SSSR vol. 55, pp:327–329, 1947.
[28] Dubinin M.M. & Astakhov V.A. “Description of adsorption equilibria of vapors on zeolites over wide ranges of temperature and pressure”, Adv. Chem. Soc., Vol. 102, pp. 69-85, 1971.
[29] Medek J., “Possibility of micropore analysis of coal and coke from the carbon dioxide isotherm”, Fuel, Vol. 56, No. 2, pp. 131-133, 1977.
[30] Sun J., Chen S., Rood M.J. & Rostam-Abadi M., “Correlating N2 and CH4 adsorption on microporous carbon using a new analytical model”, Energy and Fuels, Vol. 12, No. 6, pp. 1071-1078, 1998.