چاه‌آزمایی مخازن گازی دو ناحیه‌ای دارای شکاف هیدرولیکی از طریق شبیه‌سازی بدون بعد عددی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران، ایران

چکیده

تولید نفت و گاز از مخازن هیدروکربوری همواره منجر به بروز مشکلاتی از قبیل آسیب‌سازند می‌شود. ایجاد شکاف هیدرولیکی به‌خصوص در مخازن غیرمتعارف گازی می‌تواند تا حدی این مشکل را برطرف نماید. لزوم استفاده از ویژگی‌های میدانی نیازمند این است که مخزن با تمامی ناهمگونی‌ها و لایه‌های متعدد آن شبیه‌سازی شود. در این مقاله، معادلات حاکم بر مخزن دو ناحیه‌ای با شکاف هیدرولیک در ناحیه اول، به‌صورت بدون بعد حل‌شده و نمودارهای الگو برای چاه‌آزمایی این مخازن بررسی‌شده است. این مخزن از دو ناحیه داخلی و خارجی تشکیل‌شده است. ناحیه داخلی شامل یک شکاف هیدرولیکی و یک چاه تولیدی است. با توجه به نامحدود بودن شکاف، تمام تولید از شکاف انجام می‌شود و سیال به‌محض ورود به فضای شکاف، تولید می‌شود. مرزهای خارجی مخزن بسته در نظر گرفته ‌شده است. وجود شکاف هیدرولیکی در مخازن گازی کم‌تراوای دو ناحیه‌ای باعث می‌شود که منحنی مشتق شبه‌فشار و شبه‌فشار بدون بعد به پنج بخش متفاوت تقسیم شود. این پنج بخش به ترتیب عبارت‌اند از: اثر شکاف هیدرولیک، جریان شعاعی ناحیه داخلی، جریان گذرای بین ناحیه داخلی و خارجی، جریان شعاعی ناحیه خارجی و اثر مرزهای مخزن است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Hydraulically Fractured Bi-zonal Gas Reservoir Well Testing Using Dimensionless Numerical Simulation

نویسندگان [English]

  • Mohammad Azadi tabar
  • Mohammad Mohammadi
  • Saeid Jamshidi
Faculty of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
چکیده [English]

Oil and gas production from reservoirs always causes some problems. Hydraulically, fracturing could somehow mitigate the challenges especially for unconventional gas reservoirs. In order to gain a real knowledge of the reservoir, we should consider the reservoir with its heterogeneity and different layers. In this work, dominant equations of a hydraulically fractured bi-zonal gas reservoir are solved in a dimensionless way; moreover, type curves for well testing of this reservoir are discussed. This reservoir consists of inner and outer zones. The inner zone consists of a vertical hydraulic fracture and a vertical well. As the fracture acts infinitely, whole amount of fluid is produced within the fracture. The outer boundary of the reservoir is closed. Existence of a hydraulic fracture in a bi-zonal tight gas reservoir would cause the dimensionless pseudo-pressure and dimensionless pseudo-pressure derivative to be segmented into five sections. These five sections are caused by hydraulic fracture, radial flow of the inner zone, transient flow between the inner and the outer zones, radial flow of the outer zone, and the boundaries effects respectively.
 

کلیدواژه‌ها [English]

  • Dimensionless Simulation
  • Well Testing
  • Unconventional Gas Reservoir
  • Hydraulic Fracture
  • Bi-zonal Reservoir
[1]. Rahmanian M. R., Solano N. and Aguilera R., “Storage and output flow from shale and tight gas reservoirs,” in SPE Western Regional Meeting, Society of Petroleum Engineers, 2010.##
[2]. Gringarten A. C., Ramey Jr H. J. and Raghavan R., “Unsteady-state pressure distributions created by a well with a single infinite-conductivity vertical fracture,” Society of Petroleum Engineers Journal, Vol. 14(04): pp. 347-360, 1974.##
[3]. Rahman M. M., Rahman M. and Rahman S., “An analytical model for production estimation from hydraulically fractured tight-gas reservoirs,” in SPE Asia Pacific Oil and Gas Conference and Exhibition, Society of Petroleum Engineers, 2002.##
[4]. Boyun G., Westaway P. and Jacquemont J., “Field case studies of pressure transient data from complex reservoirs,” in SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2000.##
[5]. Corbett P. W., Geiger-Boschung S., Pinheiro Borges L., Garayev M., and Valdez C., “Limitations in numerical well test modelling of fractured carbonate rocks,” in SPE EUROPEC/EAGE Annual Conference and Exhibition, Society of Petroleum Engineers, 2010.##
[6]. Ozkan E., “Performance of horizontal wells,” Thesis/Dissertation, Tulsa Univ., OK (USA), 1988.##
[7]. Zhao Y. L., Zhang L. H., Liu Y. H., Hu Sh. Y. and Liu Q. G., “Transient pressure analysis of fractured well in bi-zonal gas reservoirs,” Journal of Hydrology, Vol. 524: pp. 89-99, 2015.##
[8]. Al-Mohannadi N., Ozkan E. and Kazemi H., “Grid system requirements in numerical modeling of pressure-transient tests in horizontal wells,” in SPE International Petroleum Conference in Mexico, Society of Petroleum Engineers, 2004.##
[9]. Archer R. A. and Yildiz T. T., “Transient well index for numerical well test analysis,” in SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 2001.##
[10]. Hegre T. “Hydraulically fractured horizontal well simulation. in European 3-D Reservoir Modelling Conference,” Society of Petroleum Engineers, 1996.##
[11]. Zhao Y. L., Zhang L. H., Luo J. X. and Zhang B. N. “Performance of fractured horizontal well with stimulated reservoir volume in unconventional gas reservoir,” Journal of Hydrology, Vol. 512, pp. 447-456, 2014.##
[12]. Hashemi A., Nicolas L. and Gringarten A. C., “Well test analysis of horizontal wells in gas-condensate reservoirs,” SPE Reservoir Evaluation & Engineering, Vol. 9(01), pp. 86-99, 2006.##
[13]. Liu Y. w., Ouyang W. P., Zhao P. H. and Fang H. J., “Numerical well test for well with finite conductivity vertical fracture in coalbed,” Applied Mathematics and Mechanics,. Vol. 35: pp. 729-740. 2014.##
[14]. McLean K. and Zarrouk S. J., “Pressure transient analysis of geothermal wells: A framework for numerica modelling,” Renewable Energy, Vol. 101: pp. 737-746, 2017.##
[15]. Wan Y., Yuewu L., Wenchao L., Guofeng H. and Congcong N., “A numerical approach for pressure transient analysis of a vertical well with complex fractures,” Acta Mechanica Sinica, Vol. 32(4): pp. 640-648, 2016.##
[16]. Chu W. C. and Shank G. D., “A new model for a fractured well in a radial, composite reservoir (includes associated papers 27919, 28665 and 29212),” SPE Formation Evaluation, Vol. 8(03): pp. 225-232, 1993.##
[17]. Ji L., Settari A. and Sullivan R. B., “A novel hydraulic fracturing model fully coupled with geomechanics and reservoir simulation,” SPE Journal, Vol. 14, Issue 03, pp. 423-430, 2009.##
[18]. Ding D. Y., Wu Y. and Jeannin L., “Efficient simulation of hydraulic fractured wells in unconventional reservoirs,” Journal of Petroleum Science and Engineering, Vol. 122, pp. 631-642, 2014.##
[19]. Aziz K. and Settari A., “Petroleum reservoir simulation,” Chapman & Hall, 1979.##
[20]. Ertekin T., Abou-Kassen J. H. and King G. R., “Basic Applied Reservoir Simulations,” Society of Petroleum Engineers, 2001.##
[21]. Gerald C. F. and Wheatley P. O., “Applied numerical analysis,” Vol. 70., Addison-Wesley Reading, MA, 1984.##
[22]. Rice R. G. and Do D. D., “Applied mathematics and modeling for chemical engineers,” John Wiley & Sons, 2012.##
[23]. Wan Y., YuewuL., Weiping O., Guofeng H. and Wenchao L., “Numerical investigation of dual-porosity model with transient transfer function based on discrete-fracture model,” Applied Mathematics and Mechanics, Vol. 37(5): pp. 611-626, 2016.##
[24]. Bourdet D., Ayoub J. and Pirard Y., “Use of pressure derivative in well test interpretation,” SPE Formation Evaluation,. Vol. 4(02): pp. 293-302, 1989.##
[25]. Chen C. C., “Modeling a fractured well in a composite reservoir,” SPE Formation Evaluation,. Vol. 10(04): pp. 241-246, 1995.
[26]. Lee J., “Well testing,” New York: Society of Petroleum Engineers, 1982. ##
[27]. Audigane P. and Blunt M. J., “Dual mesh method for upscaling in waterflood simulation,” Transport in Porous Media,. Vol. 55(1): pp. 71-89, 2004.##
[28]. von Rosenberg D. U. Local mesh refinement for finite difference methods, in SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 1982.##