[1]. Kočí K., Obalová L. and Lacný Z., “Photocatalytic reduction of CO2 over Tio2 based catalysts,” Chem. Pap., Vol. 62, No. 1, pp. 1-9, 2008.##
[2]. Yazdanpour N. and Sharifnia S., “Photocatalytic conversion of greenhouse gases (CO2 and CH4) using copper phthalocyanine modified Tio2,” Sol. Energ. Mat. Sol. Cells Vol. 118, pp. 1-8, 2013.##
[3]. Karamian E. and Sharifnia S., “On the general mechanism of photocatalytic reduction of CO2,” J. CO2 Util., Vol. 16, pp. 194-203, 2016.##
[4]. Centi G., Perathoner S. and Rak Z. S., “Reduction of greenhouse gas emissions by catalytic processes,” Appl. Catal. B, Vol. 41, No.1–2, pp. 143-155, 2003.##
[5]. He X., Gan Z., Fisenko S., Wang D., El-Kaderi H. M., Wang W. N., “Rapid formation of metal–organic frameworks (mofs) based nanocomposites in microdroplets and their applications for CO2 photoreduction,” ACS Appl. Mater. Interfaces Vol. 9, No. 11, pp. 9688-9698, 2017.##
[6]. Mikkelsen M., Jorgensen M. and Krebs F. C., “The teraton challenge. a review of fixation and transformation of carbon dioxide”, Energy Environ. Sci., Vol. 3, No. 1, pp. 43-81, 2010.##
[7]. Sadeghi N., Sharifnia S. and Sheikh Arabi M., “A porphyrin-based metal organic framework for high rate photoreduction of CO2 to CH4 in gas phase”, J. CO2 Util., Vol. 16, No. 450-457, 2016.##
[8]. Blake D. M., “Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air”, National Renewable Energy Laboratory, 1994.##
[9]. Moafi H. F., Zanjanchi M. A. and Shojaie A. F., “Tungsten-doped zno nanocomposite: synthesis, characterization, and highly active photocatalyst toward dye photodegradation,” Mater. Chem. and Phys., Vol. 139, No. 2–3, pp. 856-86, 2013.##
[10]. Hong R. Y., Li J. H., Chen L. L., Liu D. Q., Li H. Z., Zheng Y. and Ding J., “Synthesis, surface modification and photocatalytic property of zno nanoparticles,” Powder Technol., Vol. 189, No. 3, pp. 426-432, 2009.##
[11]. Lin C. C. and Hsu L. J., “Removal of polyvinyl alcohol from aqueous solutions using p-25 TiO2 and zno photocataysts: a comparative study,” Powder Technol., Vol. 246, pp. 351-355, 2013.##
[12]. Mahmodi G., Sharifnia S., Madani M. and Vatanpour V., “Photoreduction of carbon dioxide in the presence of H2, H2O and CH4 over TiO2 and zno photocatalysts,” Sol. Energ., Vol. 97, pp. 186-194, 2013.##
[13]. Gao S., Gu B., Jiao X., Sun Y., Zu X., Yang F., Zhu W., Wang C., Feng Z., Ye B. and Xie Y., “Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers,” J. Am. Chem. Soc., Vol. 139, No. 9, pp. 3438-344, 2017.##
[14]. Kandavelu V., Kastien H. and Thampi K. R., “Photocatalytic degradation of isothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO2 and zno catalysts,” Appl. Catal. B, Vol. 48, No. 2, pp. 101-111, 2004.##
[15]. Reñones P., Fresno F., Fierro J. L. G., de la Peña O’Shea V. A., “Effect of la as promoter in the photoreduction of CO2 over TiO2 catalysts,” Top. Catal., pp. 1-10, 2017.##
[16]. Özgür Ü., Alivov Y. I., Liu C., Teke A., Reshchikov M., Doğan S., Avrutin V., Cho S. J. and Morkoc H., “A comprehensive review of zno materials and devices,” J. Appl. Phys., Vol. 98, No. 4, p. 11, 2005.##
[17]. Fierro J. L. G., “Metal oxides: chemistry and applications,” CRC Press, 2005.##
[18]. Mahmodi G., Sharifnia S., Rahimpour F. and Hosseini S. N., “Photocatalytic conversion of CO2 and CH4 using zno coated mesh: effect of operational parameters and optimization,” Sol. Energ. Mater. Sol. Cells, Vol. 111, pp. 31-40, 2013.##
[19]. Hassanjani-Roshan S. M. K. A., Vaezi M. R. and Shokuhfar A., “Effect of sonication power on the sonochemical synthesis of titania nanoparticles,” J. Ceram. Process. Res., Vol. 12, No. 3, pp. 299-303, 2011.##
[20]. Kumar B. V., Naik H. S. B., Girija D. and Kumar B. V., “ZnO nanoparticle as catalyst for efficient green one-pot synthesis of coumarins through knoevenagel condensation,” J. Chem. Sci., Vol. 123, No. 5, pp. 615-621, 2011.##
[21]. Seetawan U., Jugsujinda S., Seetawan T., Ratchasin A., Euvananont C., Junin C., Thanachayanont C. andChainaronk P., “Effect of calcinations temperature on crystallography and nanoparticles in zno disk,” Mater. Sci. Appl., Vol. 2, No. 09, p. 1302, 2011.##
[22]. Lv J., Gong W., Huang K., Zhu J., Meng F., Song X. and Sun Z., “Effect of annealing temperature on photocatalytic activity of zno thin films prepared by sol–gel method,” Superlattices Microstruct., Vol. 50, No. 2, pp. 98-106, 2011.##
[23]. Kandjani A. E., Tabriz M. F. and Pourabbas B., “Sonochemical synthesis of znO nanoparticles: the effect of temperature and sonication power,” Mater. Res. Bull., Vol. 43, No. 3, pp. 645-654, 2008.##
[24]. Banerjee P., Chakrabarti S., Maitra S. and Dutta B. K., “Zinc oxide nano-particles–sonochemical synthesis, characterization and application for photo-remediation of heavy metal,” Ultrason. Sonochem., Vol. 19, No. 1, pp. 85-93, 2012.##
[25]. Hayat K., Gondal M., Khaled M. M., Ahmed S. and Shemsi A. M., “Nano zno synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water,” Appl. Catal. A., Vol. 393, No. 1, pp. 122-129, 2011.##
[26]. Kansal S. K., A. H. Ali, S. Kapoor, “Photocatalytic decolorization of biebrich scarlet dye in aqueous phase using different nanophotocatalysts,” Desalination, Vol. 259, No. 1, pp. 147-155, 2010.##
[27]. Daneshvar N., Aber S., Dorraji M. S., Khataee A. and Rasoulifard M., “Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline zno powders under irradiation of uv-c light,” Sep. Purif. Technol., Vol. 58, No. 1, pp. 91-98, 2007.##
[28]. C.-C. Lin, Y.-Y. Li, “Synthesis of zno nanowires by thermal decomposition of zinc acetate dihydrate,” Mater. Chem. Phys., Vol. 113, No. 1, pp. 334-337, 2009.##
[29]. Hsieh C. H., “Spherical zinc oxide nano particles from zinc acetate in the precipitation method,” J. Chin. Chem. Soc., Vol. 54, No. 1, pp. 31-34, 2007.##
[30]. Sabbaghan M., Firooz A. A. and Ahmadi V. J., “The effect of template on morphology, optical and photocatalytic properties of zno nanostructures,” J. Mol. Liq., Vol. 175, pp. 135-140, 2012.##
[31]. Lee S. D., Nam S. H., Kim M. H. and Boo J. H., “Synthesis and photocatalytic property of zno nanoparticles prepared by spray-pyrolysis method,” Phys. Procedia, Vol. 32, pp. 320-326, 2012 .##
[32]. Li B. j., Huang L. j., Zhou M. and Ren N. f., “Morphology and wettability of zno nanostructures prepared by hydrothermal method on various buffer layers,” Appl. Surf. Sci., Vol. 286, pp. 391-396, 2013.##
[33]. Zhu B., Zhao X., Su F., Li G., Wu X., Wu J. and Wu R., “Low temperature annealing effects on the structure and optical properties of zno films grown by pulsed laser deposition,” Vacuum, Vol. 84, No. 11, pp. 1280-1286, 2010.##
[34]. Shao H., Qian X. and Huang B., “Fabrication of single-crystal zno nanorods and zns nanotubes through a simple ultrasonic chemical solution method,” Mater. Lett., Vol. 61, No. 17, pp. 3639-3643, 2007.##
[35]. Sahu D., Acharya B. and Panda A., “Role of ag ions on the structural evolution of nano zno clusters synthesized through ultrasonication and their optical properties,” Ultrason. Sonochem., Vol. 18, No. 2, pp. 601-607, 2011.##
[36]. Xu J., Ji W., Lin J., Tang S. and Du Y., “Preparation of zns nanoparticles by ultrasonic radiation method,” Appl. Phys. A, Vol. 66, No. 6, pp. 639-641, 1998.##
[37]. De Castro M. L. and Priego-Capote F., “Ultrasound-assisted crystallization (sonocrystallization),” Ultrason. Sonochem., Vol. 14, No. 6, pp. 717-724, 2007.##
[38]. Merajin M. T., Sharifnia S., Hosseini S. and Yazdanpour N., “Photocatalytic conversion of greenhouse gases (CO2 and CH4) to high value products using TiO2 nanoparticles supported on stainless steel webnet,” J. Taiwan Inst. Chem. Eng., Vol. 44, No. 2, pp. 239-246, 2013.##
[39]. Raza W., Khan A., Alam U., Muneer M. and Bahnemann D., “Facile fabrication of visible light induced Bi2O3 nanorod using conventional heat treatment method,” J. Mol. Struct., Vol. 1107, pp. 39-46, 2016.##
[40]. Karamian E. and Sharifnia S., “On the general mechanism of photocatalytic reduction of CO2,” J. CO2 Utili., Vol. 16, pp. 194–203, 2016.##