مدل‌سازی سه بعدی پهنه‌های هرزروی گل حفاری با استفاده از الگوریتم خوشه‌بندی فازی گستافسون-کسل تعمیم یافته (مطالعه موردی: یکی از میادین نفتی جنوب غربی ایران)

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، ایران

چکیده

عوامل بسیاری در هرزروی سیال حفاری موثر هستند که مدل‌سازی همه آنها کار دشواری است. در این پژوهش، الگوریتم پهنه‌بندی فازی با توجه به شرایط هرزروی گل حفاری و با استفاده از الگوریتم خوشه‌بندی فازی گوستافسون-کسل بهبود یافته ارائه شده است، که قابلیت مدل‌سازی فرآیندهای پیچیده و تلفیق لایه‌های اطلاعاتی مختلف را داراست. برای ارزیابی الگوریتم، از لایه‌های اطلاعاتی مختلف از جمله هرزروی سیال حفاری، وزن گل حفاری و پهنه‌بندی زمین‌شناسی (به همراه موقعیت فضایی ویژگی‌های مورد بررسی) استفاده و چهار ترکیب از لایه‌های اطلاعاتی مختلف در نظر گرفته شد. به منظور تعیین تعداد بهینه پهنه‌ها، شاخص‌های مختلف اعتبارسنجی خوشه‌بندی شامل ضریب افراز (PC)، آنتروپی افراز (CE)، شاخص افراز (SC) و شاخص ژی و بنی (XB) به صورت همزمان مورد بررسی قرار گرفت. بهترین ترکیب اطلاعاتی، تلفیقی از هرزوی گل حفاری، پهنه‌بندی زمین‌شناسی با توجه به موقعیت نمونه‌ها مشخص شد، تعداد بهینه پهنه‌ها، برابر 12 پهنه و مقدار توان فازی بهینه برابر 1/1 تعیین شد. در الگوریتم خوشه‌بندی گوستافسون-کسل بهبود یافته، پارامتر وزنی برای مقیاس سازی بین کواریانس تمام داده‌ها و داخل خوشه‌ها به کار برده شده است و مقدار بهینه آن 4/0 به دست آمد. در نهایت، پهنه‌بندی سه بعدی فازی در میدان مورد مطالعه انجام شد و با توجه روش تجزیه و تحلیل تمایز فیشر، پهنه‌بندی به دست آمده از روش خوشه‌بندی از عملکرد بهتری نسبت به روش پهنه‌بندی زمین شناسی (شاخص فیشر 088/0 در مقابل 011/0) به منظور مدل‌سازی هرزروی برخوردار است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Three-dimensional Modeling of Mud Loss Zones Using the Improved Gustafson-Kessel Fuzzy Clustering Algorithm (Case Study: One of the South-western Oil Fields)

نویسندگان [English]

  • Kioumars Taheri
  • َAmin Hossein Morshedy
Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran
چکیده [English]

Several factors can be affected the lost circulation, which the modeling of all items is complex. In this research, the fuzzy zoning is presented according to the fluid mud loss and using the improved Gustafson-Kessel fuzzy clustering algorithm. It is capable to model complex processes and integrate the various layers of information. To evaluate the algorithm, different information layers including circulation losses, geological zoning and drilling mud weight (with respect to the spatial location of the studied features) were utilized and four combinations of different information layers were considered. To determine the optimal number of zones, we employ the various fuzzy validity indices comprising in comparison with Partition Coefficient (PC), Classification (Partition) Entropy (CE), Partition Index (SC), and Xie and Beni›s Index (XB). The best combination of information layers was determined consisting of mud loss, and geological zoning regarding to the coordinate of the samples, the optimal number of zones was computed as 12 zones and the optimal fuzzy exponent was obtained about 1.1. In the improved Gustafson-Kessel fuzzy clustering algorithm, weighting factor was employed for scaling between the covariance of all data and within clusters, and the optimal value was determined as 0.4. Finally, three-dimensional fuzzy zoning in the studied field was executed and the Fisher›s discriminant analysis was approved that the obtained zoning from clustering method was better performance than the common geological zoning (Fisher index 0.088 vs. 0.011) for modeling and zoning the mud loss.
 

کلیدواژه‌ها [English]

  • Drilling Mud Loss
  • Fuzzy Zoning
  • Gustafson-Kessel Clustering Method
  • Asmari Reservoir
  • Iran
 
[1]. Dupriest F. E., “Fracture closure stress (FCS) and lost returns practices,” SPE 92192, SPE/IADC Drilling Conference, Amsterdam, Netherlands, 23-25 February 2005.##
[2]. Ahmed T., “Reservoir Engineering Handbook,” 4th ed., Publishing Elsevier, p. 1454, 2010.##
[3]. Pilehvari A. and Nyshadham V. R., “Effect of material type and size distribution on performance of loss/seepage control material,” SPE 73791, Texas A&M University-Kingsville, p. 13, 2002.##
[4] مجیدی ر.، استفان ل. و جرارد ت. ژ.، « مدل‌سازی هرزروی گل حفاری در سازند با شکستگی طبیعی»، کنفرانس سالانه انجمن نفت امریکا، دنور، کلرادو، ایالات متحده آمریکا، 2010.##
[5]. Toreifi H., Rostami H. and Khaksar manshad A., “New method for prediction and solving the problem of drilling fluid loss using modular neural network and particle swarm optimization algorithm,” J. Petrol. Explor. Prod.Technol., Vol. 4, pp. 371–379, 2014.##
[6]. Oluwagbenga O., Oseh J., Oguamah I., Ogungbemi O. and Adeyi A., “Evaluation of formation damage and assessment of well productivity of oredo field, Edo State, Nigeria,” American Journal of Engineering Research (AJER), Vol. 4 Issue-3, pp 1-10, 2015.##
[7]. Wingle W. L., “Evaluating subsurface uncertainty using modified geostatistical techniques,” PhD Thesis of Philosophy (Geological Engineer), Colorado School of Mines, p. 180. 1997.##
[8]. Dagdelen K. and Turner A. K., “Importance of stationarity for geostatistical assessment of environmental contamination,” ASTM Special Technical Publication, STP1283, pp. 117-132, 1996.##
[9] حسین مرشدی ا. و معماریان ح.، 1391،»پهنه‌بندی شاخص کیفی سنگ در ساختگاه سد سمیلان، بر اساس گسل‌ها و شبکه عصبی خود سازمانده»، فصلنامه علوم زمین، سال 21، شماره 84، ص. 99 تا 112.##
[10]Taheri, K., Mohammad Torab, F. (2017). Applying Indicator Kriging in Modeling of Regions with Critical Drilling Fluid Loss in Asmari Reservoir in an Oil Field in Southwestern Iran. Journal of Petroleum Research, 27(96-4), 91-104. doi: 10.22078/pr.2017.2462.2140##
[11] Taheri, K., & Mohammad Torab, F. (2017). Modeling Mud Loss in Asmari Formation Using Geostatistics in RMS Software Environment in an Oil Field in Southwestern Iran. Iranian Jurnal of Petroleum Geology, 11(11), 1.##
[12]. Hagen-Zanker A. and Jin Y., “Adaptive zoning for transport mode choice modeling,” Transactions in GIS. Vol. 17, pp. 706-723, 2013.##
[13]. Lee G. S. and Lee K. H., “Application of fuzzy representation of geographic boundary to the soil loss model,” Hydrology and Earth System Sciences Discussions Vol. 3, pp. 115-133, 2006##
[14]. Kaufman L. and Rousseeuw P. J., “Finding groups in data: an introduction to cluster analysis,” Wiley, New Jersey, p. 342, 2009.##
[15]. Everitt B., Landau S., Leese M. and Stahl D., “Cluster analysis,” (5th ed.) Hoboken, NJ: Wiley Publishing, p. 330, 2011.##
[16]. Carvalho F. D. A. D., Tenório C. P. and Cavalcanti Junior N. L., “Partitional fuzzy clustering methods based on adaptive quadratic distances,” Fuzzy Sets and Systems, Vol. 157, pp. 2833-2857, 2006.##
[17]. Nascimento S., Mirkin B. and Moura-Pires F., “A fuzzy clustering model of data and fuzzy c-means,” In: Proceedings of 9th IEEE International Conference on Fuzzy Systems, San Antonio, pp. 302-307, 2000.##
[18]. Gustafson D. E. and Kessel W.C., “Fuzzy clustering with a fuzzy covariance matrix,” In: Proceedings of IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes, San Diego, pp. 761-766, 1978.##
[19]. Balasko B., Abonyi J. and Feil B., “Fuzzy clustering and data analysis toolbox,” University of Veszprem, Hungary, p. 74, 2002.##
[20]. Babuka R., Van der Veen P. J. and Kaymak U., “Improved covariance estimation for Gustafson-Kessel clustering,” In: Proceedings of 2002 IEEE International Conference on Fuzzy Systems, Honolulu, pp. 1081-1085, 2002.##
[21]. Jain A. K., “Data clustering: 50 years beyond K-means,” Pattern Recognition Letters Vol. 31, pp. 651-666, 2010.##
[22]. Jain A. K., Murty M. N. and Flynn P.J., “Data clustering: a review,” ACM Computing Surveys, Vol. 31, pp. 264-323. 1999.##
[23] Ting I. H., “Web mining techniques for on-line social networks analysis,” In: Proceedings of the 5th International Conference on Service Systems and Service Management, Melbourne, pp. 696-700, 2008.##
[24]. Kim D. W., Lee K. H. and Lee D., “On cluster validity index for estimation of the optimal number of fuzzy clusters,” Pattern Recognition, Vol. 37, pp. 2009–2025, 2004.##
[25]. Bezdek J. C., “Cluster validity with fuzzy sets,” Journal of Cybernetics Vol. 3, pp. 58–73, 1974.##
[26]. Bezdek J. C., “Mathematical models for systematics and taxonomy,” 8th International Conference on Numerical Taxonomy. San Francisco, pp. 143-166, 1975.##
[27]. Wu K. L. and Yang M. S., “A cluster validity index for fuzzy clustering,” Pattern Recognition Letters, Vol. 26, pp. 1275-1291, 2005.##
[28]. Bensaid A. M., Hall L. O., Bezdek J. C., Clarke L. P., Silbiger M. L., Arrington J. A. and Murtagh R. F., “Validity-guided (re) clustering with applications to image segmentation,” IEEE Transactions on Fuzzy Systems, Vol. 4, pp. 112-123, 1996.##
[29]. Xie L.X. and Beni G., “A validity measure for fuzzy clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, pp. 841-847, 1991.##
[30] حسین مرشدی ا. و معماریان ح.، 1395. «پهنه‌بندی کانسار براساس توزیع فضایی عیار کانسنگ با استفاده از الگوریتم خوشه‌بندی نقشه خود-سازمانده (مطالعه موردی: معدن چغارت)». نشریه علمی-پژوهشی مهندسی معدن، دوره 11، شماره 32، ص. 73 تا 86.##
[31]. Mojarab M., Memarian H., Zare M., Hossein Morshedy A. and Pishahang M. H., “Modeling of the seismotectonic provinces of Iran using the self-organizing map algorithm,” Computers & Geosciences, Vol. 67, pp. 150-162, 2014.##
[32]. Morshedy A. H., Torabi S. A. and Memarian H., “A hybrid fuzzy zoning approach for 3-dimensional exploration geotechnical modeling: a case study at Semilan dam, southern Iran,” Bulletin of Engineering Geology and the Environment, https://doi.org/10.1007/s10064-017-1133-1, pp. 1-18, 2017. ##.