ارزیابی ضرایب انتشار COا، SO2 و NOx برای مشعل‌های گازی واحدهای فرآورش نفت و گاز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 تبریز، دانشگاه صنعتی سهند، دانشکده مهندسی شیمی، مرکز تحقیقات مهندسی محیط زیست

2 خوزستان، مرکز علوم و تحقیقات دانشگاه آزاد اسلامی

3 اهواز، دانشگاه علوم پزشکی جندی شاپور

چکیده

محاسبه ضرایب انتشار یکی از روش‌های ساده و کم هزینه برای ارزیابی میزان آلایندگی حاصل از منابع آلاینده می‌باشد. در بین منابع آلاینده، ضرایب انتشار مشعل‌ها با خطای بالایی همراه است. چراکه میزان احتراق در مشعل‌ها به‌خصوص در حالت‌های اضطراری نامشخص بوده و اطلاعات دقیقی در مورد بازده احتراق واقعی مشعل‌ها در دسترس نیست. مقاله حاضر به منظور ارزیابی ضرایب انتشار سه آلاینده CO،اSO2 و NOx در مشعل‌ها انجام شده است. در این تحقیق، از روش محاسبه معکوس که بر اساس اندازه‌گیری محیطی همراه با مدل‌سازی استوار است، برای تخمین ضرایب انتشار آلاینده‌های گازی مورد نظر برای یک نمونه مشعل گازی در یکی از واحدهای موجود در مناطق نفت‌خیز جنوب ایران استفاده گردید. ضرایب انتشار متوسط آلاینده‌های CO، اSO2 و NOx برای این مشعل نمونه به ترتیب 07/1، 037/0 و lb /MMBtu/0168/0 با عدم قطعیت‌هایی معادل 5/27، 3/34 و 3/36% تعیین شد. مقایسه این ضرایب انتشار با ضرایب انتشار ارائه شده در مراجع، شامل ضرایب انتشار سازمان حفاظت محیط‌زیست آمریکا (EPA) و انجمن نفت آمریکای لاتین (ARPEL) نشان داد که هر دو مرجع برای تخمین میزان انتشار آلاینده‌ها به‌خصوص در مورد آلاینده‌های NOx و CO دارای خطای بالایی هستند. برای تعیین ضرایب واقعی مشعل‌های گازی، مطالعات دقیق در خصوص بررسی تأثیر شرایط محیطی بر بازده مشعل‌ها همراه با اندازه‌گیری آلاینده‌ها از طریق مشابه‌سازی مشعل‌های گازی، واقعی در آزمایشگاه مورد نیاز است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of CO, SO2 and NOx Emission Factors for Gas Flares in Oil and Gas Processing Plants

نویسندگان [English]

  • D. kahforoushan 1
  • E. Fatehifar 1
  • A. Zoveydavi 2
  • N. Jafarzadeh 3
  • S.M. Hedayatzadeh 1
1 Environmental Engineering Research Center, Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran.
2 Khoozestan Azad university science and research center, Ahvaz, Iran.
3 Jondi Shapoor medical university, Ahvaz, Iran.
چکیده [English]

Emission factors technique is one of the simple and low cost methods for estimating pollution from air pollutant sources. However, emission factors of gas flare may have high uncertainty because in flares, especially under emergency conditions, flow rate of flaring gases as well as combustion efficiency are unknown. The aim of this paper is to evaluate SO2, NOx and CO emission factors in gas flares. For this purpose, emission factors were estimated using back calculation method based on modeling and pollutant emission measurement in ambient air in a selected flare in an Iranian oil and gas plant. SO2, NOx and CO average emission factors for selected flare are determined to be 0.037, 0.0168 and 1.07 MMBtu/lb, respectively, with uncertainty of 34.3, 36.3 and 27.5%, respectively. Comparison of calculated emission factors with United States Environmental Protection Agency (EPA) and Regional Association of Oil and Natural Gas Companies in Latin America and the Caribbean (ARPEL) emission factors showed that both emission factors have high uncertainty, especially for NOx and CO emission estimation. Therefore, it is necessary to study details of the influence of ambient conditions on combustion efficiency of flares as well as experimental simulation of actual flare to obtain more representative emission factors of flares.

کلیدواژه‌ها [English]

  • Emission Factor
  • Gas and Oil Processing Plant
  • Gas Flare
  • Air Pollution Modeling
منابع
[1] European Environment Agency (EEA), Waste incineration: flaring in gas and oil extraction, Emission Inventory Guidebook, EEA, Copenhagen, Denmark, pp. 1-7, 2006.
[2] Bhatia S.C., Environmental pollution and control in chemical process industries, Khanna Publishers: New Dehli, India, 2001.
[3] Cairncross E., Report and technical protocol for the monitoring and regulation of flaring from oil refineries in South Africa, Flaring Project Final Report, 2007.
[4] Chambers A.K., DIAL measurements of fugitive emissions from natural gas plants and the comparison with emission factor estimates, 15th Emission inventory conference, New Orleans, Available at:http://www.epa.gov/ttn/chief/conference/ei15/session14/chambers.pdf, May 2006.
[5] U.S. Environmental Protection Agency (EPA), Introduction to AP 42, Compilation of air pollutant emission factors, Fifth Edition, Vol. I: Stationary point and area sources, EPA, Research Triangle Park, North Carolina, USA, 1995.
[6] McDaniel M., Flare efficiency study, EPA-600/2-83-052, 1983.
[7] Leahey D.M., Preston K. & Strosher M., “Theoretical and observational assessments of flare efficiencies”, Journal of the Air and Waste Management Association, Vol. 51, pp. 1610-16, 2001.
[8] Stern A.C., Air Pollution, Measuring, monitoring and surveillance of air pollution, New York: Academic Press, 3rd Ed. 1976.
[9] USEPA, “Compilation of air pollutant emission factors”, Vol. 1: Stationary Point and Area Sources, Fifth edition, AP-42. "Section 13.5.Industrial Flares", U.S. Environmental Protection Agency, Research Triangle Park, NC, USA, 1993.
[10] Regional Association of Oil and Natural Gas Companies in Latin America and the Caribbean (ARPEL), Guidelines for atmospheric emissions inventory methodologies in the petroleum industry, Alberta, Canada, 1998.
[11] Faulkner W.B., Lange J.M., Powell J.J., Shaw B.W. & Parnell C.B., “Sampler placement to determine emission factors from ground level area sources”, Atmospheric Environment, Vol. 41, pp. 7672-7679, 2007.
[12] Wanjura J.D., Parnell C.B., Shaw B.W. & Lacey R.E., A protocol for determining a fugitive dust emission factor from a ground level area source, In: Paper presented at the 2004 ASAE/CSAE Annual International Meeting held from 1–4 August 2004 at Ottawa, Ontario, Canada. Paper No. 044018, 2004.
[13] Ku J. & Rao, S., “Numerical simulation of air pollution in urban areas: model development”, Atmospheric environment, Vol. 21, pp.201-212, 1987.
[14] Kahforoushan D., Fatehifar E., Babalou A.A., Ebrahimian A.R., Elkamel A & Soltanmohammadzadeh J.S., Modeling and evaluation of air pollution from a gaseous flare in an oil and gas processing area, proceeding of WSEAS international conference in computing and computational techniques in sciences, pp.180-186, Spain, 2008.
[15] Constantinides A. & Mostoufi N., Numerical methods for chemical engineers with Matlab applications, Prentice Hall, Inc., 1999.
16- اداره کل هواشناسی استان خوزستان، اطلاعات سرعت باد و جهت باد در اهواز، 1378.
[17] Fatehifar E., Elkamel A., Taheri M., Anderson W.A. & Abdul-Wahab S.A., "Modeling and simulation of multipollutant dispersion from a network of refinery stacks using a multiple cell approach", Environmental Engineering Science, Vol. 24, pp.795-811, 2007.
[18] EPA, 1994. “Quality assurance handbook for air pollution measurement systems”, Vol. III., Stationary source-specific methods, Interim edition. United States Environmental Protection Agency. EPA-600/R-94/038c, Research Triangle Park, North Carolina, USA.
[19] National Pollutant Inventory (NPI), Emission estimation technique manual for combustion in boilers, Version 1.2, Environment Australia. GPO Box 787, Canberra, 2003. Available at: http://www.naei.org.uk/
[20] Sonibare J.A. & Akeredolu F.A.,“ A theoretical prediction of non-methane gaseous emissions from natural gas combustion”, Energy Policy, Vol. 32, pp.1653–1665, 2004.
[21] Canadian Association of Petroleum Producers (CAPP), A National inventory of greenhouse gas, Criteria Air Contaminant and Hydrogen Sulphide Emissions by the Upstream Oil and Gas Industry, Clearstone Engineering Ltd. 700, 900-6 Avenue S.W.Calgary, Alberta, T2P 3K2, 2004.
[22] Rivera J.D. & Rodriguez J., “Emission of industrial sources converted to natural gas”, Energy Sources, Vol. 23, pp. 115-126, 2001.
[23] Ezersky A., Proposed regulation 12, and rule 11: flare monitoring at petroleum refineries, drafts staff report, Bay Area Air Quality Management District 939 Ellis Street, San Francisco, CA, USA, 2003.