ساخت نانوکامپوزیت‌ Fe2O3/ZnO با استفاده از روش سنتز احتراقی محلول در تبدیل فتوکاتالیستی گازهای گلخانه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

مرکز تحقیقات کاتالیست، گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه رازی، کرمانشاه، ایران

چکیده

در این تحقیق با استفاده از روش سنتز احتراقی محلول، مجموعه‌ای از نانو کامپوزیت‌های Fe2O3/ZnO به‌عنوان فتوکاتالیست‌ فعال در نور مرئی، با 3 درصد ترکیب وزنی متفاوت از Fe2O3 شامل 25، 50 و 75 % ساخته شدند. ساختار، خواص نوری و ریخت‌شناسی سطح نانوکامپوزیت‌ها به‌وسیله آنالیز‌های XRDا، FESEMا، EDXا، FTIRا، PL و UV-vis مورد بررسی قرار گرفت. نتایج این آنالیزها نشان داد که خصوصیات ریخت‌شناسی، اندازه ذرات و خواص نوری نانوکامپوزیت‌های Fe2O3/ZnO به شدت به محتوای Fe2O3 وابسته است. فتوکاتالیست‌های ساخته شده به‌صورت مستقیم برای تبدیل فتوکاتالیستی گازهای گلخانه‌ای کربن‌دی‌اکسید و متان در یک رآکتور ناپیوسته، تحت تابش نور مرئی به کار گرفته شدند. نانوکامپوزیت Fe2O3/ZnO محتوای 75% وزنی Fe2O3 با اندازه ذرات nm 17 در تبدیل فتوکاتالیستی کربن‌دی‌اکسید و متان، به‌ترتیب تبدیل 16 و 21% از خود نشان داد که نسبت به فتوکاتالیست خالص ZnO با درصد تبدیل فتوکاتالیستی کربن‌دی‌اکسید و متان برابر با 3 و 4% عملکرد قابل توجهی بود.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis of Fe2O3/ZnO Nanocomposites by Solution Combustion Method for Photocatalytic Conversion of Greenhouse Gases CO2 and CH4

نویسندگان [English]

  • Mona Akbari
  • Shahram Sharifnia
Catalyst Research Center, Chemical Engineering Deptment, Razi University, Kermanshah, Iran
چکیده [English]

A series of visible light sensitive photocatalysts of Fe2O3/ZnO composites with different Fe2O3 contents (25, 50, and 75wt%) were successfully prepared by a solution combustion method. The material structure and morphology of photocatalysts and their optical properties have been examined using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDX), photoluminescence (PL) spectra, and diffuse reflectance UV–visible spectroscopy. The characterization results showed that the morphology, crystallite size, and optical properties of Fe2O3/ZnO composites varied significantly with the Fe2O3 contents. The as-synthesized photocatalysts were used for direct photocatalytic conversion of greenhouse gases (CO2 and CH4) in a batch photoreactor, under visible light irradiation. The highest rates of photocatalytic conversion of CO2 and CH4 by Fe2O3/ZnO nanocomposite were 16% and 21% respectively.
 

کلیدواژه‌ها [English]

  • Greenhouse Gases
  • Photocatalyst
  • Nanocomposite
  • Solution Combustion Method
  • Fe2O3
  • ZnO
[1]. Havran V., Dudukovi M. P. and Lo C. S., “Conversion of methane and carbon dioxide to higher value products,” Ind. Eng. Chem. Res., Vol. 50, pp. 7089-7100, 2011.##
[2]. Do J Y., Im Y., Kwak B S., Kim J Y., Kang M., Kang, “Dramatic CO2 photoreduction with H2O vapors for CH4 production using the TiO2 (bottom)/Fe-TiO2 (top) double-layered films,” Chem. Eng. J., Vol. 275, pp. 288-297, 2015.##
[3]. Qin Z. Z., Su T. M., Ji H. B. and Jiang Y. X., “Photocatalytic reduction of carbon dioxide,” in: E. Lichtfouse, J. Schwarzbauer, D. Robert (Eds.), “Hydrogen Production and Remediation of Carbon and Pollutants,” Springer., pp. 62-92, 2015.##
[4]. Yuliati L. and Yoshida H., “Photocatalytic conversion of methane,” Chem. Soc. Rev., Vol. 37, pp. 1592-1602, 2008.##
[5]. Yuliati L., Itoh H. and Yoshida H., “Photocatalytic conversion of methane and carbon dioxide over gallium oxide,” Chem. Phys. Lett., Vol. 452, pp. 178-182, 2008.##
[6]. Delavari S. and Amin N. A. S., “Photocatalytic conversion of CO2 and CH4 over immobilized titania nanoparticles coated on mesh: optimization and kinetic study,” Appl. Energy., Vol. 162, pp. 1171-1185, 2016##
[7]. Pradhan G. K., Martha S. and Parida K. M., “Synthesis of multifunctional nanostructured Zinc-Iron mixed oxide, photocatalyst by a simple solution-combustion technique,” Appl. Mater. Interf., Vol. 4, pp. 707-713, 2012.##
[8]. Mahmodi G., Sharifnia S., Madani M. and Vatanpour V., “Photoreduction of carbon dioxide in the presence of H2, H2O and CH4 over TiO2 and ZnO photocatalysts,” Solar Energy., Vol. 97, pp. 186-194, 2013.##
[9]. Teramura K., Tanaka T., Ishikawa H., Kohno Y. and Funabiki T., “Photocatalytic Reduction of CO2 to CO in the Presence of H2 or CH4 as a Reductant over MgO,” Phys. Chem. B, Vol. 108, pp. 346-354, 2004.##
[10]. Tanakaohno T., Kohno Y. and Yoshida S., “Photoreduction of carbon dioxide by hydrogen and methane,” Res Chem. Intermed., Vol. 26, pp. 93-101, 2000.##
[11]. Ehsana M. F. and Hea T., “In situ synthesis of ZnO/ZnTe common cation hetero structure and its visible-light photocatalytic reduction of CO2 in to CH4,” Appl. Catal. B., Vol. 166-167 pp. 345-352, 2015.##
[12]. Xie J., Zhou Z., Lian Y., Hao Y., Li P. and Wei Y., “Synthesis of α-Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV-vis light irradiation,” Ceram Int., Vol. l41, pp. 2622-2625, 2015.##
[13]. Achouri F., Corbel S., Aboulaich A., Balan L., Ghrabi A., Said M. B. and Schneider R., “Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures,” J. Phys. Chem. Solid., Vol. 75, pp. 1081-108, 2014.##
[14]. Vijay Kumar S., Huang N M., Yusoff N. and Lim H N., “High performance magnetically separable graphene/zinc oxide nanocomposite,” Mat. Let., Vol. 93, pp. 411– 414, 2013.##
[15]. Liu Y., Sun L., Wu J., Fang T., Cai R. and Wei A., “Preparation and photocatalytic activity of ZnO/Fe2O3 nanotube composites,” Mater. Sci. Eng. B., Vol. 194, pp. 9-13, 2015.##
[16]. Yin Q., Qiaon R., Zhu L., Li Z., Li M. and Wu W., “α-Fe2O3 decorated ZnO nanorod-assembled hollow microspheres: Synthesis and enhanced visible-light photocatalysis,” Mater. Lett., Vol. 135, pp. 135-138, 2014.##
[17]. Tariq Qamar M., Aslam M., Ismail I M. I., Salah N. and Hameed A., “The assessment of the photocatalytic activity of magnetically retrievable ZnO coated c-Fe2O3 in sunlight exposure,” Chem. Eng. J., Vol. 283, pp. 656-667, 2016.##
[18]. Maya Trevino M. L., Guzman Mar J. L., Hinojosa Reyes L., Ramos Delgado N. A., Maldonado M. I., and Hernandez Ramirez A., “Activity of the ZnO–Fe2O3 catalyst on the degradation of Dicamba and 2,4-Dherbicides using simulated solar light,” Ceram. Int., Vol. 40, pp. 8701-8708, 2014.##
[19]. Habibi N. and Karimi B., “Fabrication and characterization of zinc oxide nanoparticle coated magnetic iron oxide: Effect of S-layers adsorption on surface of oxide,” J. Ind. Eng. Chem., Vol. 20, pp. 3033-3036, 2014.##
[20]. Huang L. and Fan H., “Room-temperature solid state synthesis of ZnO/Fe2O3 hierarchical nanostructures and their enhanced gas-sensing properties,” Sens. Actuators B., Vol. 171-172, pp. 1257-1263, 2012.##
[21]. Kumar V. R., Kavitha V. T., Wariarn P. R. S., Nair S. U. K. and Koshy J., “Characterization, sintering and dielectric properties of nanocrystalline zinc oxide prepared by a citric acid-based combustion route,” J. Phys. Chem. Solid., Vol. 72, pp. 290-293, 2011.##
[22]. Wen W. and Wu J. M., “Nanomaterials via solution combustion synthesis: a step nearer to controllability,” RSC Advances., Vol. 4, pp. 58090-58100, 2014.##
[23]. J. Toniolo, Takimi A. S., Andrade M. J., Bonadiman R. and Bergmann C. P., “Synthesis by the solution combustion process and magnetic properties of iron oxide (Fe3O4 and α-Fe2O3) particles,” J. Mater. Sci., Vol. 42, pp. 4785-4791, 2007.##
[24]. Dinesha M. L., Jayanna H. S., Ashoka S. and Chandrapp G. T., “Temperature dependent electrical conductivity of Fe doped ZnO nanoparticles prepared by solution combustion method,” J. Alloys Compd., Vol. 485, pp. 538–541, 2009.##
[25]. Priyanka. and Srivastava V. C., “Photocatalytic oxidation of dye bearing wastewater by iron doped zinc oxide,” Ind. Eng. Chem. Res., Vol. 52, pp. 17790-17799, 2013.##
[26]. Gao Y., Pu X., Zhang D., Ding G., Shao X., Ma J., “Combustion synthesis of graphene oxide-TiO2 hybrid
materials for photodegradation of methyl orange,” Carbon., Vol. 50, pp. 4093- 4101, 2012.##
[27]. Mirzaie A. R., Kamrani F., Firooz A. A. and Khodadadi A. A., “Effect of Fe2O3 addition on the morphological, optical and decolorization properties of ZnO nanostructures,” Mater. Chem. Phys., Vol. 133, pp. 311-316, 2012.##
[28]. Sun J. H., Dong S. Y., Wang Y. K. and Sun S. P., “Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst,” J. Hazard Mater., Vol. 172, pp.1520-1526, 2009.##
[29]. Shi D., Feng Y. and Zhong S., “Photocatalytic conversion of CH4 and CO2 to oxygenated compounds over Cu/CdS–TiO2/SiO2 catalyst,” Catalysis Today., Vol. 98, pp. 505– 509, 2004.##
[30]. Yazdanpour N. and Sharifnia S., “Photocatalytic conversion of greenhouse gases (CO2 and CH4) using copper phthalocyanine modified TiO2,” Sol. Energ. Mate. Sol. Cel., Vol. pp. 118 1–8, 2013.##
[31]. Mahmodi G., Sharifnia S., Rahimpour F. and Hosseini S. N., “Photocatalytic conversion of CO2 and CH4 using ZnO coated mesh: Effect of operational parameters and optimization,” Sol. Energy Mater. Sol. Cel., Vol. 111, pp. 31-40, 2013.##
[32]. Torabi M. M., Sharifnia S., Hosseini S. N. and Yazdanpour N., “Photocatalytic conversion of greenhouse gases (CO2 and CH4) to high value products using TiO2 nanoparticles supported on stainless steel webnet,” J Taiwan Inst. Chem. Eng., Vol. 44, pp. 239-246, 2013.##
[33] Wu J. C. S. and Huang C. W., “In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation,” Front Chem. Eng. China., Vol. 4 120-126, 2010.##
[34] Huang W., Xie K. C., Wang J. P., Gao Z. H., Yin L. H. and Zhu Q. M., “Possibility of direct conversion of CH4 and CO2 to high-value products,” J. Catal., Vol. 201, pp. 100-104, 2001.##
[35]. Bando K. K., Sayama K., Kusama H., Okabe K. and Arakawa H., “In-situ FT-IR study on CO2 hydrogenation over Cu catalysts supported on SiO2, Al2O3,” and TiO2, Appl. Catal. A., VoL. 165, No.1-2, pp. 391- 409, 1997.##
[36]. Teramura K., Tanaka T., Ishikawa H., Kohno Y. and Funabiki T., “Photocatalytic Reduction of CO2 to CO in the Presence of H2 or CH4 as a Reductant over MgO,” J. Phys. Chem. B., Vol. 108, pp. 346-354, 2004.##
[37]. Silverstein R. M., Bassler G. C. and Morrill T. C., “Spectrometric Identification of Organic Compounds,” 5th Ed., Wiley, New York, 1991.##
[38]. He M. Y. and Ekerdt J. G., “Infrared studies of the adsorption of synthesis gas on zirconium dioxide,” J. Catal., Vol. 87, No. 2, pp. 381-388, 1984.##
[39]. Kiss J., Rasko J. and Kecskes T., “Adsorption and reaction of formaldehyde on TiO2-supported Rh catalysts studied by FTIR and mass spectrometry,” J. Catal., Vol. 226, pp.183-191, 2004.##