مطالعه رفتار جذب و خواص دینامیکی مخلوط هیدروکربن-آب-گاز اسیدی در فضای نانوحفرات کربناته و کائولینیتی با استفاده از روش شبیه‌سازی دینامیک مولکولی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پردیس‌ پژوهش‌ و‌ توسعه‌ صنایع‌ بالادستی‌ نفت، پژوهشگاه صنعت نفت، تهران، ایران

2 دانشکده مهندسی شیمی، دانشگاه تهران، ایران

چکیده

 در این مقاله با انجام شبیه‌سازی‌های دینامیک مولکولی (برای نخستین بار) یک راه‌کار مقایسه‌ای جهت مطالعه رفتار جذب سیال شامل هیدروکربن(پروپان، نرمال هگزان، نرمال هپتان، نرمال دکان)- آب- گاز اسیدی بر سطوح (1014) کلسیم کربنات و (001) کائولینیت در فضای نانوحفرات ارائه گردیده است. براساس توزیع دانسیته به‌دست آمده، مولکول‌های هیدروکربن تمایل بیشتری در جذب بر سطح (1014) کلسیم کربنات نسبت به سطح (001) کائولینیت داشته‌اند. مولکول آب نیز تمایل مشابهی مبنی بر جذب بیشتر بر سطح کلسیم کربنات (نسبت به سطح کائولینیت) از خود نشان داده است. در مقام مقایسه، گازهای اسیدی تمایل مشابهی مبنی بر جذب بیشتر بر سطح کائولینیت نشان می‌دهند. این رفتار جذب در فضای نانومتری حفرات مشاهده گردیده است. نتایج حاکی از کاهش ضریب نفوذ مولکولی با افزایش جذب بر سطوح معدنی در فضای نانومتری می‌باشد. همچنین، وجود یک فاز آبی در فضای میانی نانوحفرات کربناته (با قطر Å 40) به توسط شبیه‌سازی‌های دینامیک مولکولی مورد تایید قرار گرفته است.
 

کلیدواژه‌ها


عنوان مقاله [English]

A Molecular Dynamics Investigation of the Adsorption Behavior and Dynamics of Hydrocarbon Liquid-water- acid Gases Mixtures in Calcite and Kaolinite Nano-pore Slits

نویسندگان [English]

  • Babak Fazel Abdolabadi 1
  • Aliasghar Alizadeh Mojarad 2
1 Institute of Enhanced Oil Recovery, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
2 Department of Chemical Engineering, University of Tehran, Iran
چکیده [English]

We conducted a set of molecular dynamics simulations, as the first comparative study of the adsorption behavior of liquid hydrocarbon (propane, n-hexane, n-heptane, n-decane)/acid gases/water molecules over {} calcite surface and {001} octahedral kaolinite surface in nano-confined slit. According to atomic z-density profiles, hydrocarbon molecules have higher tendency towards the {} calcite surface than the {001} octahedral kaolinite surface. In addition, water molecules showed the same tendency for stronger adsorption over calcite surface than kaolinite. In contrast, acid gas molecules showed higher tendency towards kaolinite surface than calcite surface. This behavior was spotted within nanometer-sized slit pores. The results also pointed to reduction in self-diffusion coefficient of molecules with strong adsorption over mineral surfaces in nano-confined environment. Existence of a water phase in the middle-region of slit was confirmed by the  molecular dynamics simulations’ results.
 

کلیدواژه‌ها [English]

  • Molecular Dynamics Simulation
  • Calcite
  • Kaolinite
  • Nano-confinement
[1]. Javanbakht G. Sedghi M. Welch W. and Goual L., “Molecular dynamics simulations of CO2 /water/quartz interfacial properties: impact of CO2 dissolution in water”, Langmuir, Vol. 31 No. 21, pp. 5812–5819, DOI:10.1021/acs.langmuir.5b00445, 2015.##
[2]. Fazelabdolabadi B. and Alizadeh Mojarad A., “On the adsorption and hydrodynamics behavior of H2S and CO2 molecules in organic liquids inside nanoslit pores in vicinity of calcite {1014} surface”, J. Natural Gas Science and Engineering 28, pp. 106-120, DOI:10.1016/j.jngse.2015.11.023, 2016.##
[3]. Oughanem R., Youssef S., Bauer D., Peysson Y., Maire E. and Vizika O., “A multi-scale investigation of pore structure impact on the mobilization of trapped oil by surfactant injection”, Transport Porous Med. 109(3), pp.673-692 (2015). DOI:10.1007/s11242-015-0542-5.##
[4]. Hou B., Wang Y. and Huang Y., “Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants”, Appl. Surf. Sci. 330, pp. 56-64, DOI:10.1016/j.apsusc.2014.12.185, 2015.##
[5]. Šolc R., Gerzabek M. H., Lischka H. and Tunega D., “Wettability of kaolinite (001) surfaces—molecular dynamic study”, Geoderma, 169, pp. 47-54, DOI:10.1016/j.geoderma. 2011.02.004, 2011.##
[6]. Liascukiene I., Steffenhagen M., Asadauskas S. J., Lambert J. and Landoulsi J., “Self-assembly of fatty acids on hydroxylated al surface and effects of their stability on wettability and nanoscale organization”, Langmuir Vol. 30 No. 20, pp. 5797–5807, DOI: 10.1021/la404756y, 2014.##
[7]. Pernyeszi T., Patzko A., Berkesi O. and Dékány I., “Asphaltene adsorption on clays and crude oil reservoir rocks”, Colloid Surface A, Vol. 137, No. 1, pp. 373-384, DOI:10.1016/S0927-7757(98)00214-3, 1998.##
[8]. Cooke D. J., Gray R. J., Sand K. K., Stipp S. L. and Elliott J. A., “Interaction of ethanol and water with the {1014} surface of calcite”, Langmuir Vol. 26, No. 18, pp. 14520-14529, DOI:10.1021/la100670k, 2010.##
[9]. Jorgensen W. L., Maxwell D. S. and Tirado Rives J., “Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids”, J. Am. Chem. Soc. Vol. 118, No. 45, pp. 11225–11236, DOI:10.1021/ja9621760, 1996.##
[10]. Sekkal W. and Zaoui A., “Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs”, Sci. Rep. 3, p.1587, DOI:10.1038/srep01587, 2013.##
[11]. Harris J. G. and Yung K. H., “Carbon dioxide›s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model”, J. Phys. Chem. Vol. 99, No. 31, pp 12021–12024, DOI: 10.1021/j100031a034, 1995.##
[12]. Headen T. F. and Boek E. S., “Molecular dynamics simulations of asphaltene aggregation in supercritical carbon dioxide with and without limonene”, Energy Fuels, Vol. 25, No. 2, pp 503–508, DOI: 10.1021/ef1010397, 2011.##