شبیه‌سازی شرایط تشکیل هیدرات گازی در حضور و عدم حضور بازدارنده‌های ترمودینامیکی با استفاده از روابط تجربی و مدل‌های داده محور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس، گروه مهندسی شیمی

2 دانشگاه خلیج فارس بوشهر، گروه مهندسی شیمی

چکیده

هیدرات‌های گازی در تأسیسات مختلف مربوط به جابه‌جایی گاز طبیعی و تجهیزات فرآیندی در میادین نفت و گاز، پالایشگاه‌ها، پتروشیمی و دستگاه‌های موجود در صنایع شیمیایی، درصورت حضور هم‌زمان گاز طبیعی و آب، در شرایط فشار بالا و دمای پایین تشکیل می‌گردد. به‌منظور جلوگیری از تشکیل هیدرات، دما و فشار تشکیل هیدرات تخمین زده می‌شود. در این مقاله دو مدل داده محور یعنی شبکه عصبی مصنوعی و سیستم فازی-عصبی (مدل انفیس) به عنوان ابزاری جایگزین جهت تخمین فشار تشکیل هیدرات برای سیستم‌های گازی مختلف با استفاده از داده‌های تجربی موجود در این زمینه، توسعه داده شد. جهت رسیدن به این هدف، ساختار بهینه هر یک از این مدل‌های داده محور برای سیستم‌های مورد بررسی، با استفاده از پارامترهای آماری تعیین گردید. مقادیر حاصل از کاربرد شبکه عصبی و مدل انفیس با نتایج به‌دست آمده از روابط تجربی و مدل ترمودینامیکی دانشگاه هریوت وات (HWHYD) مقایسه گردید. از بین دو مدل داده محور، مدل انفیس در همه موارد از لحاظ تمامی معیارهای عملکردی، پاسخ بهتری نسبت به شبکه عصبی مصنوعی نشان داد. همچنین مدل انفیس نسبت به روابط تجربی و مدل ترمودینامیکی دانشگاه هریوت وات از دقت بالاتری برخوردار بود.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of Gas Hydrate Formation Condition in the Presence and Absence of Thermodynamics Inhibitors Using Empirical Correlations and Data-Driven Models

نویسندگان [English]

  • S.M. Hoseini Nasab 1
  • M. Vafaei 1
  • A.A. Izadpanah 2
1 Department of chemical engineerin, Tarbiat Modares University, Tehran
2 Department of chemical engineerin, Khalij Fars University, Booshehr
چکیده [English]

Hydrates are known to occur in a variety of natural-gas handling facilities and processing equipment in oil fields, refineries, and chemical plants where natural gas and water coexist at elevated pressures and reduced temperatures. Prevention of hydrate formation requires prediction of hydrate formation temperature or pressure. In this paper, two data-driven models, i.e. artificial neural network (ANN) and neuro-fuzzy system (ANFIS model) have been applied to predict hydrate formation pressure by available experimental data in this field as alternative tools. For this purpose, optimum structure of data-driven models was determined by statistical parameters. Optimum neural network and ANFIS models were compared with well-known empirical correlation and thermodynamic model of Heriot-Watt University. The results obtained in this work indicate that ANFIS model is more accurate in prediction of hydrate formation pressure than ANN. Furthermore, comparison shows that ANFIS matches better with experimental data compared with empirical correlation and HWHYD model in terms of statistical values.

کلیدواژه‌ها [English]

  • Prediction
  • Hydrate Formation Pressure
  • Data-Driven Model
  • Artificial Neural Network
  • ANFIS Model
منابع
[1] Singh T.N., Sinha S. & Singh V.K., “Prediction of thermal conductivity of rock through physico-mechanical properties”, Build. Env. Vol. 2 (1), pp. 146–155, 2007.
[2] Kaul M., Hill R.L. & Walthall C., “Artificial neural networks for corn and soybean yield prediction”, Agriculture System 85, pp. 1-18, 2005.
[3] Torrecilla J.S., Otero L. & Sanz P.D., “A neural network approach for thermal/pressure food processing”, Food Engineering Vol. 62: pp. 89-95, 2004.
[4] Haykin S., Neural networks: A comprehensive foundation. McMillan College Publishing Company, New York, 1994.
[5] Azadeh A., Ghaderi S.F. & Sohrabkhani.S., “Forecasting electrical consumption by integration of Neural Network, time series and ANOVA”, Applied Mathematics and Computation, 2006.
[6] Rai P., Majumdar G.C., Das Gupta S. & De, S., “Prediction of the viscosity of clarified fruit juice using artificial neural network A combined effect of concentration and temperature”, J. Food Eng., Vol. 68, pp. 527-533, 2005.
[7] Bouchard C. & Grandjean A., “A neural network correlation for variation of viscosity of sucrose aqueous solutions with temperature and concentration”, Lebensm- Wiss. U. -Technol.,Vol. 28, pp. 157-159, 1995.
[8] Laugier S., Richon D., “Use of artificial neural networks for calculating derived thermodynamic quantities from volumetric property data”, Fluid Phase Equilib., Vol. 210, pp. 247-255, 2003.
[9] Potukuchi W. & Wexler AS., “Predicting vapor pressures using neural networks”, Atmos. Environ., Vol. 31, pp. 741-753, 1997.
[10] Shyam S.S., Oon-Doo B., & Michele M., “Neural networks for predicting thermal conductivity of bakeryproducts”, J. Food Eng., Vol. 52, pp. 299-304, 2002.
[11] Petersen R., Fredenslund A., & Rasmussen P., “Artificial neural networks as a predictive tool for vapor liquid equilibrium”, Comput. Chem. Eng., Vol. 18, pp. s63-s67, 1994.
[12] Sharma R., Singhal D., Ghosh R. & Dwivedi A., “Potential applications of artificial neural networks to thermodynamics: Vapour-liquid equilibrium predictions”, Com-put. Chem. Eng., Vol. 23, pp. 385-390, 1999.
[13]Ganguly S., “Prediction of VLE data using radial basis function network”, Comput. Chem. Eng., Vol. 27, pp. 1445- 1454, 2003.
[14] Hoseini-Nasab S.A., Izadpanah A.M. & Vafaei-Sefti M., “Application of adaptive neuro-fuzzy inference system for estimation of vapor+ liquid equuilibria of binary systems, carbon dioxide–ethyl caproate, ethyl caprylate and ethyl caprate”, Presented in The 6th International Chemical Engineering Congress and Exhibition (IChEC 2009), Kish Island, Iran, 16-20 November, 2009.
[15] Elgibaly A. & Elkamel A., “A new correlation for predicting hydrate formation conditions for various gas mixtures and inhibitors Fluid Phase Equilibria”, Vol. 152, pp. 23–42, 1998.
[16] Elgibaly A. & Elkamel A., “Optimal Hydrate Inhibition Policies with the Aid of Neural Networks”, Energy & Fuels, Vol. 13, pp. 105-113, (1999).
[17] Heydari A., Shayesteh K. & Kamalzadeh L, “Prediction of hydrate formation temperature for natural gas using J. Chem. Eng. Jpn., Vol. 23, pp. 87–91, 1990.
[38] Avlonitis D., Danesh A. & Todd A.C., “Prediction of VL and VLL equilibria of mixtures containing petroleum reservoir fluids and methanol with a cubic EOS”, Fluid Phase Equilib., Vol. 94, pp. 181–216, (1994).
[39] Van der Waals J.H. & Platteeuw J. C., “Clathrate Solutions”, Adv. Chem. Phys., Vol 2, pp. 1–57, (1959).
[40] Avlonitis D., Thermodynamics of gas hydrate equilibria, Ph.D. Thesis, Department of Petroleum Engineering, Heriot-Watt University, Edinburgh, UK, 1992.
[41] Tohidi-Kalorazi B., Gas hydrate equilibria in the presence of electrolyte solutions, Ph.D. Thesis, Department of Petroleum Engineering, Heriot-Watt University, Edinburgh, UK, 1995.