شبیه‌سازی عددی عملکرد مخزن اسکیمر موجود در یک واحد نمک‌زدایی برای جانمایی مناسب دیواره‌های حایل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد دزفول، ایران

2 دانشکده ‌مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد اهواز، ایران

چکیده

مقدار کاهش آلودگی نفتی از پساب در اسکیمرها تابع ابعاد هندسی و نحوه جانمایی دیواره‌های حایل درون سیستم است. یک دستگاه مخزن اسکیمر به قطر 8 متر و ارتفاع 10 متر در یک واحد نمک‌زدایی موجود است که به‏علت عدم ‏طراحی صحیح مخزن و تجهیزات درون آن در بدو راه‌اندازی عمل‏کردی نامناسب داشته و از سرویس خارج شده‌است. با توجه به وجود مخزن، برای اصلاح عمل‏کرد آن باید ابعاد آن به‏عنوان شرایط ثابت یا محدودیت مسئله لحاظ شوند و صرفا با جانمایی تجهیزات داخلی مشکل حل شود. در این مطالعه با استفاده از هندسه مخازن موجود با عمل‏کرد مطلوب و تشابه‌سازی هندسی، آرایش دیواره حایل اسکیمر چندضلعی بررسی‏شده استخراج شد. سپس شبیه‌سازی عددی میدان جریان دوفازی سه‌بعدی آشفته درون مخزن مذکور با استفاده از یک روش اویلرین-لاگرانژین در نرم‌افزار فلوئنت انجام شده‌است. برای اعتبارسنجی نتایج شبیه‌سازی عددی جریان درون مخزن، مقدار فشار در نازل ورودی بررسی و مشاهده می‌شود که این مقدار با فشار هیدرواستاتیکی هم‏خوانی دارد. نتایج نشان می‌دهند که طراحی جدید مخزن اسکیمر در ایجاد تغییرات در این مخزن، اعم از نحوه چینش دیواره حایل، ابعاد آن و تغییر قطر نازل خروجی آب، مناسب است و به افزایش حضور ذرات نفت و هم‏چنین افزایش مسیر ذرات نفت به سمت خروجی آب منجر شده‌است. بنابراین در عمل با نصب دیواره‌های حایل چندصلعی به مخزن اسکیمر موجود و تغییر قطر لوله خروجی آب می‌توان از این مخزن استفاده کرد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Simulation of the Performance of the Skimmer Tank Existing in a Desalination Unit in order to Find the Suitable Position of the Baffle

نویسندگان [English]

  • Shima Khorami 1
  • Aziz Azimi 2
1 Department of Mechanical Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran.
2 Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
چکیده [English]

In skimmer tanks, the reduction of oil pollution from wastewater is a function of the geometry and the location of baffles inside these systems. The performance of a skimmer tank, existing in a desalination plant, with a diameter of 8 meters and a height of 10 meters has been unsatisfactory at the time of its launch because of lack of proper design of the tank and its internal equipment and thus, it has been out of service. In order to improve its performance, its aspects and sizes must be considered as problem’s constraints, and the problem solution must only be solved by locating its internal equipment. In this study, the arrangement of the polygon baffle of this skimmer tank has been extracted using geometrical similarity of an existing tank’s geometry with suitable performance. After that, three-dimensional turbulent flow within the tank has been simulated numerically using Fluent package. In order to validate the results of numerical simulation of flow in the tank, the pressure at the inlet pipe has been examined, and it can be shown that this amount is consistent with hydrostatic pressure. The performance of the skimmer tank has been assessed by establishing baffle and changing the diameter of the outlet pipe of water and doing numerical simulation. The results show that the new design of the skimmer tank will lead to increase the resident time of oil particles as well as to increase oil particles’ path through the water outlet pipe. Therefore, by installing the polygon baffle inside the existing tank and changing the diameter of the water outlet pipe, this tank can be used for operational purposes.
 

کلیدواژه‌ها [English]

  • Oil Particles’ Resident Time
  • Skimmer Tank
  • Polygon Baffle
  • Numerical Simulation
  • DOM Method
[1]. Santos F., Fontes C., Aguirre J. and Mvmelo, M., “Efficiency comparation of tanks of pre-flotation using computational fluid dynamics,” 20th Int. Cong. Mech. Eng., Brazil, November, 2009.##
[2]. Clauss G. and Abu Amro M., “A new design concept for seaway independent oil skimming,” ASME 23rd Int. Conf. on Offshore Mechanics and Arctic Eng., Vancouver, British Columbia, Canada , pp. 403-410, 2004.##
[3]. Clauss G. and Abu Amro M., “Two and three phase flow computational for the optimization of oil skimmer systems,” 3rd Int. Symp. Two Phase Flow Model. Exp., Pisa, Italy, September 2004.##
[4]. Alizadeh Dakhel A. and Rahimi M., “CFD simulation of homogenization in large scale crude oil storage tanks,” J. Petroleum Sci. and Eng., Vol. 43, Issue 4, pp. 151-161, August 2004.##
[5]. Lee C. M. and Frankiewicz T., “The design of large diameter skim tanks using computational fluid dynamics (CFD) for maximum oil removal,” 15th Annual Produced Water Seminar, Texas, USA, January 2005.##
[6]. Clauss G., Abu Amro M., and Kosleck S., “Numerical and experimental optimization of a seaway independent oil skimming system-SOS,” 16th Int. offshore and polar Eng. Conf. & Exhib., San Francisco, California, USA, 2006.##
[7]. Abu Amro M. and Sprenger F., “An Innovative offshore oil skimming system for operation in harsh sea,” J. Ship Tech. Research, Vol. 55, Issue 4, pp. 147-156, October 2008.##
[8]. Zhao Z. and Shi B., “Numerical simulation of oil-water separation process in disk separator,” Int. Conf. on Remote, Sensing Inviron. Transp. Eng., Nanjing, China, 2010.##
[9]. Schaller E. and Schaller E., “Dual surface density baffle for clarifier tank,” Patent US7963403, USA, June 2011.##
[10]. Phelps D., Khan R. I., Lee J. M., Andrews P. and Marlowe D., “Fluid modeling helps improve skim tank performance,” J. World Oil, Vol. 231, Gulf Publishing Co., Houston, PP. 147-151, 2012.##
[11]. Ramajo D. E., Ravicule M., Macciaro C., Weismann P. and Nigro N. M., “Numerical and experimental evaluation of skimmer tank technologies for gravity separation of oil in produced water,” Ind. Appl. (B), Vol. 31, No. 23, pp. 3693-3714, 2012.##
[12]. Kharous L., Khezzar L. and Saadawi H., “Application of CFD to debottleneck production separators in a major oil field in the Middle East,” SPE Annual Technical Conf. and Exhibition, Texas, USA, October 2012.##
[13]. Hussein H. A., Abdullah R., Harun S. and Abdulkhaleq M., “Numerical model of baffle location effect on flow pattern in oil and water gravity separator Tanks,” J. World Applied Sciences, pp. 1351-1356, 2013.##
[14]. Almeida L., Briggs A., Peralta R. and Ropelato K., “Evaluation of oil removal efficiency at gravitational tanks using CFD,” ESSS Conf. & Ansys Users Meeting, 2013.##
[15]. Ni S., Qiu W., Zhang A. and Prior D., “Hydrodynamic simulation and optimization of an oil skimmer,” ASME 32nd Int. Conf. Ocean Offshore and Arctic Eng., Nantes, France, Vol. 9, 2013.##
[16]. Ismirlian P. and Evangelista A., “Optimization of the design of a skimmer tank,” ESSS Conf. & Ansys Users Meeting, Argentina, 2014.##
[17]. Behin J. and Azimi S., “Experimental and computational analysis on influence of water level on oil-water separator efficiency,” J. Sep. Sci. and Tech., Vol. 50, Issue 6, pp. 154-159, 2015.##
[18]. Orszag S. A., Yakho V., Flannery W. S., Boysan F., Choudhury D., Maruzewski J. and Patel B. “Renormalization group modeling and turbulance simulation,” Int. Conf. on Near Wall Turb. Flow, Tempe, Arizona, 1993.##
[19]. Morsi S. A. and Alexander A. J., “An investigation of particle trajectory in two phase flow system,” J. Fluid Mech., Vol. 55, Issue 2, pp. 193-208, 1972.##
[20]. Ranade V. V., “Computational flow modeling for chemical reactor engineering,” Elsevier, Burlington, 2001.##
[21]. Ansys Fluent Documentation,” Version 14.5.##