بررسی تغییرات هیدرودینامیک بسترسیال با مقایسه جاذب سیگنال‌های ارتعاشی بستر به روش آماری دیکس

نوع مقاله : مقاله پژوهشی

نویسندگان

آزمایشگاه سیستم‌های چند فازی، دانشکده مهندسی شیمی، پردیس دانشکده‌های فنی، دانشگاه تهران، ایران

چکیده

راکتورهای بستر سیال در صنعت نفت از اهمیت بسیاری برخوردارند. پایش دائمی هیدرودینامیک این بسترها به جهت شناخت عوامل ایجادکننده‌ کلوخه و خرد‌شدن ذرات بسیار پراهمیت است. در این تحقیق از روش غیر تداخلی ارتعاشات به منظور تعیین پارامترهای هیدرودینامیکی بستر سیال استفاده شده است. همچنین ارزیابی سری زمانی سیگنال‌های ارتعاشی بستر در حوزه‌ فضای حالت صورت گرفته است. آزمایش‌ها در یک بستر سیال آزمایشگاهی با قطر داخلی  cm 15 و ارتفاع m 2 انجام شده است. ابتدا اثر ارتفاع بستر سیال پر شده توسط شن با قطر متوسط µm 470 و دانسیته kg/m 3 2640 مورد تحلیل قرار گرفت و سپس تاثیر نوع شن با قطرهای متوسط 226 و µm 700 مورد استفاده در بستر سیال روی پارامترهای هیدرولیکی بستر سیال مورد بررسی قرار گرفت. در ادامه با تغییر سرعت هوای ورودی به بستر، تاثیر تغییر رژیم جریانی در بستر از حبابی به درهم روی پارامترهای هیدرولیکی بستر بررسی شد. برای بازسازی جاذب سامانه بستر سیال در حوزه فضای حالت، از روش تاخیر‌های زمانی استفاده شده است و پارامتر‌های لازم برای بازسازی جاذب‌ها بهینه شده‌اند. با مقایسه جاذب‌های مختلف، حساسیت روش آماری دیکس به تغییرات ارتفاع بستر، نوع شن و سرعت هوای ورودی به بستر، مورد تایید قرار گرفته است. این روش از آن جهت اهمیت پیدا می‌کند که امکان تشخیص تغییرات در هیدرودینامیک راکتورهای چند فازی و سیستم‌های مشابه را مهیا نموده و فرصت لازم را برای کنترل این تغییرات فراهم می‌آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Attractor Comparison of Vibration Signal by S-statistic Method to Characterize Hydrodynamics of Fluidized Bed

نویسندگان [English]

  • Fatemeh Mohammadi
  • Rahmat Sotudeh Gharebagh
  • Hedayat Azizpour
  • Reza Zarghami
  • Navid Mostoufi
Multiphase Research Systems Lab., School of Chemical Engineering, College of Engineering, University of Tehran
چکیده [English]

Monitoring of fluidized bed hydrodynamics is an essential issue. In this work, a new method, based on comparison of attractors of reference and evaluation time series, was applied to investigate the fluidized bed hydrodynamics by analyzing the bed vibration signatures. The experiments were carried out gas-solid fluidized of 15 cm inner diameter and 2 m height for three particle sizes, different velocities, and three probe heights. The measured signals of different sand and aspect ratio were compared based on the null hypothesis. The attractor of a system has been reconstructed by applying time delay embedding theory on measured values. The results indicate that the S-statistics method can detect small Changes in gas velocities, the particle size and aspect ratio of the sand.  The importance of this method is its ability on the detecting of changes in the hydrodynamic of fluidized bed and provide of changes for controlling these variations.

کلیدواژه‌ها [English]

  • Fluidized Bed
  • Attractor
  • State Space
  • Vibration Signal
  • S-statistic
[1]. Kunii D. and Levenspiel O., “Fluidization Engineering, 2nd ed., Butterworth-Heinemann, Boston, USA, 1991.##
[2]. Bi H. T., and Grace J. R., “Effect of measurement method on the velocities used to demarcate the onset of turbulent fluidization,” The Chemical Engineering,Journal and the Biochemical Engineering, Vol. 57, No. 3, pp. 261-271. 1995.##
[3]. Bi H. T., Ellis N., Abba I. A., and Grace J. R., “A state-of-the-art review of gas–solid turbulent fluidization,” Chemical Engineering Science, Vol. 55, No. 21, pp. 4789-4825. 2000.##
[4]. Chen A. and Bi H. T., “Pressure fluctuations and transition from bubbling to turbulent fluidization,” Powder Technology, Vol. 133, No. 1, Issues 1–3, pp. 237-246, 30 July 2003.##
[5]. Xu C., Cheng Y., and Zhu J., “Fluidization of fine particles in a sound field and identification of group C/A particles using acoustic waves,” Powder Technology, Vol. 161, No. 3, pp. 227-234. 2006.##
[6]. Naelapää K., Veski P., Pedersen J. G., Anov D., Jørgensen P., Kristensen H. G., and Bertelsen P., “Acoustic monitoring of a fluidized bed coating process,” International Journal of Pharmaceutics, Vol. 332, No. 1, pp. 90-97. 2007.##
[7]. Book G., Albion K., Briens L., Briens C., and Berruti F., “On-line detection of bed fluidity in gas–solid fluidized beds with liquid injection by passive acoustic and vibrometric methods,” Powder Technology, Vol. 205, No. 1, pp. 126-136. 2011.##
[8]. Vervloet D., Nijenhuis J., and Van Ommen J. R., “Monitoring a lab-scale fluidized bed dryer: A comparison between pressure transducers, passive acoustic emissions and vibration measurements,” Powder Technology, Vol. 197, No. 1, pp. 36-48. 2010.##
[9]. van Ommen J. R., Schouten J. C., and van den Bleek C. M., “An early-warning-method for detecting bed agglomeration in fluidized bed combustors,” In Proceedings of the 15th International Conference on Fluidized Bed Combustion No. 150, ASME, New York, Paper. 1999.##
[10]. Daw C. S., and Halow J. S., “Evaluation of control of fluidization quality through chaotic time series analysis of pressure-drop measurements,” (No. CONF-921104--10). Oak Ridge National Lab., TN (United States). 1992.##
[11]. Wright J., “Monitoring changes in time of chaotic nonlinear systems,” Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 5, No. 2, pp. 356-366. 1995.##
[12] Kennel M. B. “Statistical test for dynamical nonstationarity in observed time-series data,” Physical Review E, Vol. 56, No. 1, p. 316. 1997.##
[13]. Daw C. S., Finney C. E. A., Nguyen K., and Halow J. S., “Symbol statistics: a new tool for understanding multiphase flow phenomena,” Power, Vol 1, No. 02, pp. 1-10. 1998.##
[14]. Finney C. E. A., Nguyen K., Daw C. S., and Halow, J. S., “Symbol-Sequence Statistics for Monitoring Fluidization,” Proc. of ASME Heat Transfer Division, Vol. 5, R. A. Nelson, Jr., T. Chopin, S. T. Thynell (editors), ASME, New York, 405-412. 1998.##
[15]. Schouten J. C., and Van den Bleek C. M., “Monitoring the quality of fluidization using the short-term predictability of pressure fluctuations,” AIChE Journal, Vol. 44, No. 1, pp. 48-60. 1998.##
[16]. Van Ommen J. R., Coppens M. O., Van Den Bleek C. M., and Schouten J. C., “Early warning of agglomeration in fluidized beds by attractor comparison”. AIChE Journal, Vol. 46, No. 11, pp. 2183-2197. 2000.##
[17]. Diks C., Van Zwet W. R., Takens F., and DeGoede J., “Detecting differences between delay vector distributions”. Physical Review E, Vol. 53, pp. 2169-2176. 1996.##
[18]. van Ommen, J. R., Coppens, M. O., Van den Bleek, C. M., & Schouten, J. C., “Early warning of agglomeration in fluidized beds by attractor comparison, AIChE Journal, Vol. 46, No. 11, pp. 2183-2197. 2000.##
[19]. Packard N. H., Crutchfield J. P., Farmer, J. D., and Shaw R. S., “Geometry from a time series,” Physical Review, Vol. 45, pp. 712-715.1980.##
[20]. Takens F., “Detecting strange attractors in turbulence,” Lecture Notes in Mathematics, Vol. 898, Dynamical Systems and Turbulence, D. A. Rand and L.S. Young(editors), Springer Verlag, Berlin, Germany, pp. 366-373. 1981.##
[21]. عزیزپور ه.، “تأثیر تغییرات اندازه ذرات برروی ارتعاشات راکتورهای بستر سیال”، پایان‌نامه کارشناسی ارشد، دانشگاه تهران، پردیس دانشکده‌های فنی، دانشکده مهندسی شیمی 1389.##
[22]. Tamadondar M. R., Zarghami R., Azizpour H., Mostoufi N., Chaouki J. and Radmanesh R., “Using S-statistic for investigating the effect of temperature on hydrodynamics of gas–solid fluidization,” Particuology, Vol. 11, pp. 288–293. 2013.##
[23]. Shiea M., Sotudeh-Gharebagh R., Azizpour H., Mostoufi N. and Zarghami R., “Predicting Transition Velocities from Bubbling to Turbulent Fluidization by S Statistics on Vibration Signals,” Particulate Science and Technology, 31, 10–15.##
[24]. Van der Schaaf J., Schouten J. C., Johnsson F., and Van den Bleek C. M., “Decomposition of Power Spectral Density in Gas-Solids Fluidized Beds,” Proc. Third Int. Conf. on Multiphase Flow 98, Lyon, France 1998.##