ارزیابی اثر تنش‌های پسماند بر مقاومت استاتیکی و چقرمگی دینامیکی ناحیه جوش چند گذر محیطی در خطوط انتقال گاز طبیعی ایران بر اساس معیارهای جدید طراحی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مکانیک، دانشکده مهندسی، مرکز آموزش عالی محلات، ایران

2 گروه مکانیک، دانشکده فنی و مهندسی، دانشگاه بیرجند، خراسان جنوبی

3 دانشکده مکانیک، پردیس فنی، دانشگاه تهران، ایران

چکیده

نتایج آزمون کشش در ناحیه جوش و ناحیه متاثر از حرارت سازه‌های جوشکاری شده، به دلیل وجود ریز ساختارهای متنوع متالورژیکی در نقاط بسیار نزدیک به هم معتبر نمی‌باشد. بهترین روش تخمین مقاومت ماده در این مناطق، تبدیل نتایج آزمون سختی به مقاومت تسلیم و مقاومت نهایی به‌وسیله روابط تجربی می‌باشد. در این صورت میزان کاهش تنش طراحی سازه ناشی از تنش‌های پسماند جوشکاری با دقت بیشتری لحاظ می‌شود. در این مطالعه سختی سنجی در نواحی مختلف جوش سر به سر لوله فولادی انتقال گاز طبیعی ایران انجام گرفت. از ترکیب نتایج آزمون‌های سختی سنجی و تنش‌های پسماند(ارزیابی شده به‌وسیله آزمون کرنش سنجی سوراخ) در نقاط مشخص، معیارهای بی بعد Rya (حاصل از تقسیم متوسط تنش پسماند بر مقاومت تسلیم سازه)، Rym (حاصل از تقسیم حداکثر تنش پسماند بر مقاومت تسلیم سازه)، Ru2 (حاصل از تقسیم اختلاف تنش پسماند بر مقاومت نهایی سازه) و Ru3 (بر اساس نسبت اختلاف تنش‌های پسماند حداکثر و حداقل سه بعدی بر مقاومت نهایی سازه) جهت تعیین رفتار مکانیکی واقعی سازه برای اولین بار ارائه گردید. شناسایی حداکثر معیار Rya و حالت بحرانی کاهش مقاومت استاتیکی(کاهش تنش طراحی) در مرکز درز جوش سطح خارجی لوله با نتایج آزمون کشش مطابقت دارد. منطبق بودن منطقه گسست در آزمون کشش با ناحیه حداکثر معیار Rym، بیان کننده اثر تنش‌های پسماند بر رفتار استاتیکی (علاوه بر ماهیت هیدوراستاتیک تنش‌های پسماند) سازه می‌باشد. کاهش شدید معیار Ru2 با روند تصاعدی کاهش مقاومت به ضربه در راستای عمود بر درز جوش تطابق دارد. به نظر می‌رسد با توجه به اثر تنش‌های صفحه‌ای (در لوله‌های جدار نازک)، پارامتر Ru2 در ارزیابی مقاومت فولاد به ضربه معیار مناسب‌تری از پارامتر Ru3 باشد.
 

کلیدواژه‌ها


عنوان مقاله [English]

An Evaluation of the Effect of Residual Stresses on the Static Strength and Dynamic Toughness of Multi-Pass Girth Welding in Iranian Natural Gas Transmission Pipeline Using New Design Criteria

نویسندگان [English]

  • majid sabokrouh 1
  • Seyed Hojat Hashemi 2
  • Mohammad Reza Farahani 3
1
2
3
چکیده [English]

The tensile test in the weld and heat-affected zone of welded structures give global results due to the presence of various metallurgical microstructures in these regions. The best way to estimate the strength of material in these areas is converting the results of hardness test to yield strength (or ultimate strength) by empirical relationships. In this study, the hardness test was carried out in various areas of the girth welded steel pipe used in Iranian natural gas transportation projects. Then, dimensionless parameters Rya (the average residual stress over material yield strength), Rym (the maximum residual stress over material yield strength), Ru2 (the difference in residual stress over material ultimate strength) and Ru3 (the difference between maximum and minimum of three-dimensional residual stresses over the material ultimate strength) were presented to determine the actual mechanical behavior of structure for the first time. Hardness and tensile tests identify the minimum yield strength in the heat-affected zone adjacent to weld gap. The increase in hardness values from the root pass to the next passes is consistent with increase in the carbon content. Identification of maximum Rya criterion and critical mode of reduced static strength (reducing of stress design) in the center of weld gap on the outer surface of the pipe are consistent with tensile test results. The rupture zone in the tensile test with highest Rym criteria represents the effect of residual stresses on the static behavior of structure (in addition to the hydrostatic nature of residual stresses). The sharp decline in Ru2 criteria is consistent with the exponential reduction in impact strength perpendicular to the weld gap. It can be concluded that with regard to the effect of plane stresses (in thin-walled pipes) Ru2 criterion is more appropriate in assessing the impact strength of steel than Ru3.
 

کلیدواژه‌ها [English]

  • Girth welding
  • Mechanical Properties
  • Dimensionless Parameters
  • Rya
  • Rym
  • Ru2
  • Ru3
[1]. Lu J. “Handbook of measurement of residual stress,” Society for Experimental Mechanics, 1st ed., pp. 2-7, 1996. ##
[2]. Bose-Filho W. W., Carvalho A. L. M. and Strangwood M., “Effect of alloying elements on the microstructure and inclusion formation in HSLA multipass welds,” Materials Characterization, Vol. 58, pp. 29-39, 2007.##
[3] فروزان م. ر.، حیدری ع.، گلستانه س. ج.، شبیه‌سازی اجزای محدود فرآیند جوشکاری زیرپودری لوله‌های API 5L-X70 با درز جوش مستقیم مورد استفاده در صنایع نفت و گاز، استقلال، اصفهان، 1388.##
[4] سبک روح م.، هاشمی س. ح.، فراهانی م. ر.، بررسی تجربی ارتباط ریزساختار و خواص مکانیکی با تنش‌های پسماند ناحیه جوش چند پاسه محیطی خطوط لوله انتقال گاز طبیعی ایران، نشریه پژوهش نفت، پژوهشگاه صنعت نفت، سال بیست و سوم، شماره 76، ص. 65-79، تهران، 1392.##
[5]. Hammond, J., Blackman, S. and Hudson, M., “Challenges of girth welding X100 linepipe for gas pipelines,” Pipe Dreamer's Conference, Application and Evaluation of High-Grade Linepipes in Hostile Environments, Pacifico, Yokohama, 2002.##
[6]. Hudson M., Blackman S., Hammond J. and Dorling D., “Girth welding of X100 pipeline steels,” International Pipeline Conference IPC02, Calgary, 2002.##
[7]. Ruibin G., Yiliang Z., Xuedong X., Liang S. and Yong Y., “Residual stress measurement of new and in-service X70 pipelines by X-ray diffraction method,” NDT&E International, Vol. 44, pp. 397-393, 2011.##
[8]. Paddea S., Francis J. A., Paradowska A. M., Bouchard R. P. J. and Shibli I. A., “Residual stress distributions in a P91 steel-pipe girth weld before and After post weld heat treatment,” Materials Science and Engineering, Vol. 534, pp. 663-672, 2012.##
[9]. Hashemi S. H., “Strength–hardness statistical correlation in API X65 steel,” Materials Science and Engineering, Vol. 528, pp.1648–1655, 2011.##
[10]. Benham P. P., Crawford R. J., Armstrong C. G., “Mechanics of engineering materials,” Longman Group,” 1996.##
[11] Chakrabarty J., “Theory of plasticity,” 3rd ed., Elsevier, Heinemann, 2006.##