مدل‌سازی توزیع اندازه ذرات در سیستم‌های پلیمریزاسیون امولسیونی بوتیل آکریلات و بوتادی‌ان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه سیستان و بلوچستان، گروه مهندسی شیمی

2 دانشیار گروه مهندسی شیمی/ دانشگاه سیستان و بلوچستان

3 پژوهشگاه پلیمر و پتروشیمی ایران

چکیده

توزیع اندازه ذرات، یکی از مهم‌ترین پارامتر‌های لاتکس‌های تولید شده به روش پلیمریزاسیون امولسیونی است. این پارامتر بر خواص رئولوژیکی، نوری، چسبندگی، تشکیل فیلم و و مقامت مکانیکی لاتکس تاثیر گذرا است. در این راستا، مدل‌سازی توزیع اندازه ذرات در پلیمریزاسیون امولسیونی از نقطه نظر مطالعات مکانیزمی و کاربردی از اهمیت بسزایی برخوردار است. توسعه دینامیکی توزیع اندازه ذرات توسط مجموعه‌ای از معادلات موازنه جمعیت که وقایع متعددی از جمله هسته‌زایی، رشد و انعقاد را در بر می‌گیرد، توصیف می‌شود. حجم تولید بالا و کاربرد گسترده پلی بوتیل‌آکریلات و پلی بوتادین که به روش پلیمریزاسیون امولسیونی تولید می‌شوند، بر اهمیت مدل‌سازی این دو فرآیند در راستای بهبود درک مکانیسمی و تولید محصولات مورد نظر می‌افزاید. در این پژوهش مدلی مکانیزمی بر مبنای معادلات موازنه جمعیت برای پیش‌بینی توزیع اندازه ذرات در پلیمریزاسیون امولسیونی بوتیل‌آکریلات و بوتادی‌ان ارائه شده است و روش حجم محدود برای گسسته‌سازی معادلات موازنه جمعیت مورد استفاده قرار گرفته است. نتایج حاصل از مدل‌سازی این دو فرآیند به منظور بررسی اثر غلظت عامل فعال کننده سطح بر روی تغییرات درصد تبدیل و متوسط قطر ذرات در مقایسه با داده‌های تجربی مورد بررسی قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling of Particle Size Distribution in Emulsion Polymerization of Butyl acrylate and Butadiene

چکیده [English]

The particle size distribution (PSD) is one of the most important parameters of emulsion polymerization latexes. This parameter affected the rheological and optical properties, adhesion, film formation and mechanical strength of latexes. Therefore, the modeling of PSD is of utmost importance in terms of application and mechanistic studies. Dynamic evolution of PSD is described by a set of population balance equations which involved various phenomena such as nucleation, growth, and coagulation. The extensive application and especially annually massive production of poly(butylacrylate) and polybutadiene produced by emulsion polymerization, highlights the significant of modeling these processes, which could resulted in better mechanistic knowledge and tailor-made polymer materials. In this paper, a mechanistic model based on population balance equations is developed for butyl acrylate and butadiene emulsion polymerization in a batch reactor. This model is used to predict the evolution of particle size distribution and the finite volume method as a precise technique is used for discritizing PBEs. The simulation results compared with the measured values during the evolution of conversion and average particle diameter for different initial surfactant concentrations.

کلیدواژه‌ها [English]

  • Particle Size Distribution
  • emulsion polymerization
  • butyl acrylate
  • butadiene
  • population balance equations
[1]. Vale H. M. and McKenna T. F., “Modeling particle size distribution in emulsion polymerization,” Prog. Polym. Sci.,Vol. 30, No. 10, pp. 1019-1048, 2005.##
[2]. Immanuel C. D., Pinto M. A., Richards J. R. and Congalidis H. P., “Population balance model versus lumped model for emulsion polymerization; semi-batch and continuous operation,” Chem. Eng. Res. Des,.Vol. 86, No. 7, pp. 692-702, 2008.##
[3]. Feiz S. and Navarchian A. H., “Emulsion polymerization of styrene: simulation the effect of mixed ionic and non-ionic surfactant system in the presence of coagulation,” Chem. Eng. Sci., Vol. 69, No.1, pp. 431-439, 2012.##
[4]. Mariz I. F. A., Leiza J. R. and de La Cal J. C., “Competitive particle growth: A tool to control the particle size distribution for the synthesis of high solid content low viscosity latexes,” Chem. Eng. J., Vol. 168, No. 2, pp. 938-946, 2011.##
[5]. Hosseini A., Bouaswaig A. E. and Engell S., “Comparison of classical population balance models of emulsion polymerization with experimental results and a stochastic extension,” Chem. Eng. Sci., Vol. 72, pp. 179-194, 2012.##
[6]. Hosseini A., Bouaswaig A. E. and Engell S., “Novel approaches to improve the particle size distribution prediction of classical emulsion polymerization model,” Chem. Eng. Sci., Vol. 88, pp. 108-120, 2013.##
[7]. Gao J. and Penlidis A., “Mathematical modeling and computer simulator/ database for emulsion polymerizations,” Prog. Polym. Sci.,Vol. 27, No.3, pp. 403-535, 2002.##
[8]. Li B. and Brooks B. W., “Modeling and simulation of semibatch emulsion polymerization,” J. Apply. Polym. Sci., Vol. 48, No. 10, pp. 1811-1823, 1993.##
[9]. Gilbert R. G., “Emulsion polymerization: A mechanistic approach,” Academic Press, London, 1995.##
[10]. Vale H. M. and McKenna T. F., “Particle formation in vinyl chloride emulsion polymerization: reaction modeling,” Ind. Eng. Chem. Res., Vol. 48, No. 11, pp. 5193-5210, 2009.##
[11]. Sajjadi S., “Population Balance Modeling of particle size distribution in monomer-starved semibatch emulsion polymerization,” AIChE J., Vol. 55, pp. 3191-3205, 2009.##
[12]. Coen E. M., Peach S., Morrison B. R. and Gilbert R. B., “First-principle calculation of particle formation in emulsion polymerization: pseudo-bulk system,” Polymer.,Vol. 45, No. 11, pp. 3595-3608, 2004.##
[13]. Jung S. M. and Gomes V. G., “Transitional emulsion polymerization: zero-one to pseudo-bulk,” Chem. Eng. Sci.,Vol. 66, No. 18, pp. 4251-4260, 2011.##
[14]. Weerts P. A., van der Loos J. L. and German A. L., “Emulsion polymerization ofbutadiene, the effect of initiator and emulsifier concentrations,” Makromol. Chem., Vol.190, No. 4, pp. 777-788, 1988.##
[15]. Weerts P. A., van der Loos J. L. and German A. L., “Emulsion polymerization of butadiene, effect of stirring condition and monomer/water,” Ratio, Makromol. Chem., Vol. 192, No. 9, pp. 1993-2008, 1991.##
[16]. Weerts P. A., van der Loos J. L. and German A. L., “Emulsion polymerization of butadiene, effect of thiols, Makromol,” Chem., Vol. 192, No. 9, pp. 2009-2019, 1991.##
[17]. Verdurmen E. M., Dohmen E. H., Verstegen J. M., Maxwell I. A., Germann A. L. and Gilbert R. G., “Seeded emulsion polymerization of butadiene. 1. The propagation rate coefficient,” Macromolecules., Vol. 26, No. 2, pp. 268-275, 1993.##
[18]. Verdurmen E. M., German A. L., Sudol E. D. and Gilbert R. B., “Particle growth in butadiene emulsion polymerization, 2 Gamma radiolysis,” Macromol. Chem. Phys., Vol. 195, No. 2, pp. 635- 640, 1994.##
[19]. Verdurmen E. M., Geurts J. M. and German A. L., “Particle growth in butadiene emulsion polymerization, 3 Radical adsorption and desorption rate coefficients,” Macromol. Chem. Phys., Vol. 195, No. 2, pp. 641- 645, 1994.##
[20]. Edouard D., Sheibat-Othman N. and Hammouri H., “Observer design for particle size distribution in emulsion polymerization,” AIChE J., Vol. 51, No. 12, pp. 3167-3185, 2005.##
[21]. Abedini H. and Shahrokhi M., “Inferential closed-loop control of particlesize distribution for styrene emulsion polymerization,” Chem. Eng. Sci., Vol. 63, No. 9, pp. 2378-2390, 2008.##
[22]. Immanuel C. D., Corderio C. F., Sundaram S. S., Meadows E. S., Crowley T. and Doyle F. J., “Modeling of particle size distribution: comparison with experimental data and parametric sensitivity studies,” Comput. Chem. Eng., Vol. 26, No. 7-8, pp. 1133-1152, 2002.##
[23]. Hernandez H. F. and Tauer K., Radical, “Desorption kinetics in emulsion polymerization. 1. theory and simulation,” Ind. Eng. Chem. Res., Vol. 47, No. 24, pp. 9795-9811, 2008.##
[24]. Nomura M. and Harada M., “Rate coefficient for radical desorption in emulsion polymerization,” J. Appl. Polym. Sci., Vol. 26, No. 1, pp. 17-26, 1981.##
[25]. Asua J. M., “A new model for radical desorption in emulsion polymerization,” Macromolecules, Vol. 36, No. 16 , pp. 6245-6251, 2003.##
[26]. Kiparissides C., “Challenges in particulate polymerization reactor modeling and optimization: A population balance perspective,” J. Process Control.,Vol.16, No. 3, pp. 205-224, 2006.##
[27]. Farshchi F., “On-line monitoring of emulsion polymerization by conductimetry and calorimetry,” Ph.D. Thesis, Claude Bernard University, Lyon, France, 2004.##
[28]. Beuermann S. and Buback M., “Rate coefficients of free-radical polymerization deduced from pulsed laser polymerization,”Prog. Polym. Sci., Vol. 27, No. 2, pp. 191-254, 2002.##
[29]. Weerts P.A., “Emulsion Polymerization of butadiene, A kinetic study,” Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, Netherlands, 1990.##
[30]. Maxwell I. A., Napper D. H. and Gilbert R. G., “Emulsion polymerization of butyl acrylate Kinetics of Particle Growth,” J. Chem. Soc., Vol. 83, No. 5, pp. 1449-1467, 1987.##
[31]. Buback M., “Degener B., Rate coefficient for free radical emulsion polymerization of butyl acrylate to high conversion,” Makromol. Chem., Vol. 194, No. 10, pp. 2875-2883, 1993.##