جداسازی دی اکسیدکربن/ نیتروژن با استفاده از غشای آلیاژی ABS/PEG

نوع مقاله : مقاله پژوهشی

چکیده

میزان گاز گلخانه‌ای دی اکسیدکربن در اتمسفر زمین رو به افزایش می‌باشد. جداسازی این گاز از منابع اصلی تولید کننده آن نظیر نیروگاه‌ها، صنایع فولاد و سایر صنایع شیمیایی به‌دلیل افزایش اثرات مخرب گازهای گلخانه‌ای مورد توجه فراوانی قرار گرفته است. در این راستا، با توجه به مزایای غشاهای پلیمری برای جداسازی گازها به روش آلیاژسازی، غشاهای آلیاژی از اکریلونیتریل-بوتادین-استایرن (ABS) و پلی اتیلن گلایکول (PEG) تهیه شده است. سپس اثر افزودن ترکیب درصدهای مختلف پلی اتیلن گلایکول افزوده شده به ABS بر تراوایی و گزینش‌پذیری گازهای دی اکسیدکربن و نیتروژن، بررسی گردید. همچنین، اثر فشار بر تراوایی دی اکسیدکربن مورد مطالعه قرار گرفت. نتایج حاصل نشان می‌دهد که تراوایی دی اکسیدکربن در غشای آلیاژی ساخته شده از ABS و 10 درصد وزنی 20000PEG، دارای مطلوب‌ترین خواص جداسازی بوده و میزان تراوایی دی اکسیدکرین و گزینش پذیری دی اکسیدکربن/نیتروژن آن در مقایسه با غشای ABS افزایش مطلوبی یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Separation of CO2/N2 by ABS/PEG Blend Membrane

چکیده [English]

Greenhouse CO2 gas content is increasing in the atmosphere. Separation of CO2 from emission sources generated by power plants, steel works and various chemical industries has attracted global attention as a result of the enhanced greenhouse destructive effects. Considering the advantages of gas separation polymeric membranes by blending method for membrane preparation, acrylonitrile-butadiene-styrene/Poly (ethylene glycol) blend membranes have been prepared. Then, the effect of incorporating different PEG contents into ABS on the permeability/selectivity of CO2/N2 was investigated. Additionally, the effect of pressure on CO2 permeability has been studied. The results showed that CO2 permeability in the ABS/PEG20000 (10 wt %) had the most suitable gas separation properties. In addition, the CO2 permeability and CO2/N2 selectivity values of this membrane increased significantly in comparison with neat ABS membrane

کلیدواژه‌ها [English]

  • Separation
  • Carbon Dioxide/Nitrogen
  • Permeability
  • Blend Membrane
منابع
[1] Zhang J., Webley P.A. & Xiao P., “Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas”, Energy Conversion and Management, Vol. 49, pp. 346-356, 2008.
[2] Powell C.E. & Qiao G.G., “polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases”, J. Membr. Sci., Vol. 279, pp. 1-49, 2006.
[3] Kohl A. & Nielsen R., Gas purification, 5th Ed., Gulf Publishing Co., Houston, Texas, 1997.
[4] Pacala S. & Socolow R., “Stabilization wedges: solving the climate problem for the next 50 years with current technologies”, Science, Vol. 305, pp. 968-972, 2004.
[5] Davidson O. & Metz B., Special report on carbon dioxide capture and storage, International Panel on Climate Change, Geneva, Switzerland, 2005. www.ipcc.ch.
[6] Zhao L., Riensche E., Menzer R., Blum L. & Stolten D., “A parametric study of CO2/N2 gas separation membrane processes for postcombustion capture”, J. Membr. Sci., Vol. 325, pp. 284-294, 2008.
[7] Koros W.J. & Fleming G.K., “Membrane based gas separations”, J. Membr. Sci., Vol. 83, pp. 1-80, 1993.
[8] Stern S.A., “Polymers for gas separations: the next decade”, J. Membr. Sci., Vol. 94, pp. l-65, 1994.
[9] Mi Y. & Hirose T., “Molecular design of high-performance polyimide membranes for gas separations”, J. Polym. Res., Vol. 3, pp. 11-19, 1996.
[10] Kazama S., Morimoto S., Tanaka S., Mano H., Yashima T., Yamada K. & Haraya K., “Cardo polyimide membranes for CO2 capture from flue gases”, in: E.S. Rubin, D.W. Keith, C.F. Gilboy (Eds.), “Proceedings of seventh international conference on greenhouse gas control technologies”, Cheltenham, UK, 2004.
[11] Kazama S., Sakashita M., “Gas separation properties and morphology of asymmetric hollow fiber membranes made from cardo polyamide”, J. Membr. Sci. Vol. 243, pp. 59-68, 2004.
[12] Kazama S., Teramoto T. & Haraya K., “Carbon dioxide and nitrogen transport properties of bis(phenyl)fluorene-based cardo polymer membranes”, J. Membr. Sci. Vol. 207, pp. 91-104, 2002.
[13] Korshak V.V., Vinogradova S.V., Vygodskii Y.S., “Cardo polymers”, Polymer Reviews, Vol. 11, pp. 45-142, 1974.
[14] Baker R.W., “Future directions of membrane gas separation technology”, Ind. Eng. Chem. Res., Vol. 41, pp. 1393-1411, 2002.
[15] Kaldis S.P., Kapantaidakis G.C. & Sakellaropoulos G.P., “Polymer membrane conditioning and design for enhanced CO2/N2 separation”, Coal Sci. Tech., Vol. 24, pp. 1927-1930, 1995.
[16] Liang W., Martin C.R., “Gas transport in electronically conductive polymers”, Chem. Mater. Vol. 3, pp. 390-391, 1991.
[17] Petersen J.& Peinemann K.V., “Novel polyamide composite membranes for gas separation prepared by interfacial polycondensation”, J. Appl. Polym. Sci., Vol. 63, pp. 1557-1563, 1997.
[18] Piroux F., Espuche E., Mercier R. & Pineri M., “Sulfonated copolyimides: influence of structural parameters on gas separation properties”, Desalination, Vol. 145, pp. 371-374, 2002.
[19] Yoshino M., Ito K., Kita H. & Okamoto K.I., “Effects of hard-segment polymers on CO2/N2 gas-separation properties of poly(ethylene oxide) segmented copolymers”, J. Polym. Sci. Part B: Polym. Phys., Vol. 38, pp. 1707-1715, 2000.
[20] Marchese J., Garis E., Anson M., Ochoa N.A. & Pagliero C., “Gas sorption, permeation and separation of ABS copolymer membrane”, J. Membr. Sci., Vol. 221, pp. 185-197, 2003.
[21] Zhao H.Y., Cao Y.M., Ding X.L., Zhou M.Q., Liu J.H. & Yuan Q., “Poly(ethylene oxide) induced cross-linking modification of Matrimid membranes for selective separation of CO2”, J. Membr. Sci., Vol. 320, pp. 179-184, 2008.
[22] Kuehne D.L. & Friedlander S.K., “Selective transport of sulfur dioxide through polymer membranes”, Ind. Eng. Chem. Process Des. Dev., Vol. 19, pp. 609-616, 1980.
[23] Hu X., Tang J., Blasig A., Shen Y. & Radosz M., “CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen”, J. Membr. Sci., Vol. 281, pp. 130-138, 2006.
[24] Li J., Wang S., Nagai K., Nakagawa T. & Mau A.W-H, “Effect of polyethyleneglycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) blend membranes”, J. Membr. Sci., Vol. 138, pp. 143-152, 1998.
[25] Car A., Stropnik Ch., Yave W. & Peinemann K.V., “PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation”, J. Membr. Sci., Vol. 307, pp. 88-95, 2008.
[26] Whelan T., Polymer technology dictionary, 1st ed., Chapman & Hall, UK, 1994.
[27] Damle Sh. & Koros W.J., “Permeation equipment for high-pressure gas separation membranes”, Ind. Eng. Chem. Res., Vol. 42, pp. 6389-6395, 2003.
[28] Patel N.P. & Spontak R.J., “Gas-transport and thermal properties of a microphase-ordered poly(styrene-b-ethylene oxide-b-styrene) Triblock Copolymer and its Blends with Poly(ethylene glycol)”, Macromolecules, Vol. 37, pp. 2829-2838, 2004.
[29] Teplyakov V. & Meares P., “Correlation aspects of the selective gas permeabilities of polymeric materials and membranes”, Gas Sep. Purif., Vol. 4, pp. 66-74, 1990.
[30] Ghosal A.S. & Koros W.J., “Energetic and entropic contributions to mobility selectivity in glassy polymers for gas separation membranes”, Ind. Eng. Chem. Res., Vol. 38, pp. 3647-3654, 1999.
[31] Yampolskii Y., Pinnau I. & Freeman B., Materials science of membranes for gas and vapor separation, John Wiley & Sons Inc., England, 2006.
[32] Lin H. & Freeman B.D., “Gas permeation and diffusion in crosslinked poly(ethylene glycol diacrylate)”, Macromolecules, Vol. 39, pp. 3568-3580, 2006.
[33] Lin H. & Freeman B.D., “Gas solubility, diffusivity and permeability in poly(ethylene oxide)”, J. Membr. Sci., Vol. 239, pp. 105-117, 2004.
[34] Xu Z.K., Xiao L., Wang J.L. & Springer J., “Gas separation properties of PMDA/ODA polyimide membranes filling with polymeric nanoparticles”, J. Membr. Sci., Vol. 202, pp. 27-34, 2002.
[35] Tin P.S., Chung T.S., Liu Y., Wang R., Liu S.L. & Pramoda K.P., “Effect of cross-linking modification on gas separation performance of Matrimid membranes”, J. Membr. Sci., Vol. 225, pp. 7790, 2003.
[36] Robeson L.M., “The upper bound revisited”, J. Membr. Sci., Vol. 320, pp. 390-400, 2008.