منابع
[1] Zhang J., Webley P.A. & Xiao P., “Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas”, Energy Conversion and Management, Vol. 49, pp. 346-356, 2008.
[2] Powell C.E. & Qiao G.G., “polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases”, J. Membr. Sci., Vol. 279, pp. 1-49, 2006.
[3] Kohl A. & Nielsen R., Gas purification, 5th Ed., Gulf Publishing Co., Houston, Texas, 1997.
[4] Pacala S. & Socolow R., “Stabilization wedges: solving the climate problem for the next 50 years with current technologies”, Science, Vol. 305, pp. 968-972, 2004.
[5] Davidson O. & Metz B., Special report on carbon dioxide capture and storage, International Panel on Climate Change, Geneva, Switzerland, 2005. www.ipcc.ch.
[6] Zhao L., Riensche E., Menzer R., Blum L. & Stolten D., “A parametric study of CO2/N2 gas separation membrane processes for postcombustion capture”, J. Membr. Sci., Vol. 325, pp. 284-294, 2008.
[7] Koros W.J. & Fleming G.K., “Membrane based gas separations”, J. Membr. Sci., Vol. 83, pp. 1-80, 1993.
[8] Stern S.A., “Polymers for gas separations: the next decade”, J. Membr. Sci., Vol. 94, pp. l-65, 1994.
[9] Mi Y. & Hirose T., “Molecular design of high-performance polyimide membranes for gas separations”, J. Polym. Res., Vol. 3, pp. 11-19, 1996.
[10] Kazama S., Morimoto S., Tanaka S., Mano H., Yashima T., Yamada K. & Haraya K., “Cardo polyimide membranes for CO2 capture from flue gases”, in: E.S. Rubin, D.W. Keith, C.F. Gilboy (Eds.), “Proceedings of seventh international conference on greenhouse gas control technologies”, Cheltenham, UK, 2004.
[11] Kazama S., Sakashita M., “Gas separation properties and morphology of asymmetric hollow fiber membranes made from cardo polyamide”, J. Membr. Sci. Vol. 243, pp. 59-68, 2004.
[12] Kazama S., Teramoto T. & Haraya K., “Carbon dioxide and nitrogen transport properties of bis(phenyl)fluorene-based cardo polymer membranes”, J. Membr. Sci. Vol. 207, pp. 91-104, 2002.
[13] Korshak V.V., Vinogradova S.V., Vygodskii Y.S., “Cardo polymers”, Polymer Reviews, Vol. 11, pp. 45-142, 1974.
[14] Baker R.W., “Future directions of membrane gas separation technology”, Ind. Eng. Chem. Res., Vol. 41, pp. 1393-1411, 2002.
[15] Kaldis S.P., Kapantaidakis G.C. & Sakellaropoulos G.P., “Polymer membrane conditioning and design for enhanced CO2/N2 separation”, Coal Sci. Tech., Vol. 24, pp. 1927-1930, 1995.
[16] Liang W., Martin C.R., “Gas transport in electronically conductive polymers”, Chem. Mater. Vol. 3, pp. 390-391, 1991.
[17] Petersen J.& Peinemann K.V., “Novel polyamide composite membranes for gas separation prepared by interfacial polycondensation”, J. Appl. Polym. Sci., Vol. 63, pp. 1557-1563, 1997.
[18] Piroux F., Espuche E., Mercier R. & Pineri M., “Sulfonated copolyimides: influence of structural parameters on gas separation properties”, Desalination, Vol. 145, pp. 371-374, 2002.
[19] Yoshino M., Ito K., Kita H. & Okamoto K.I., “Effects of hard-segment polymers on CO2/N2 gas-separation properties of poly(ethylene oxide) segmented copolymers”, J. Polym. Sci. Part B: Polym. Phys., Vol. 38, pp. 1707-1715, 2000.
[20] Marchese J., Garis E., Anson M., Ochoa N.A. & Pagliero C., “Gas sorption, permeation and separation of ABS copolymer membrane”, J. Membr. Sci., Vol. 221, pp. 185-197, 2003.
[21] Zhao H.Y., Cao Y.M., Ding X.L., Zhou M.Q., Liu J.H. & Yuan Q., “Poly(ethylene oxide) induced cross-linking modification of Matrimid membranes for selective separation of CO2”, J. Membr. Sci., Vol. 320, pp. 179-184, 2008.
[22] Kuehne D.L. & Friedlander S.K., “Selective transport of sulfur dioxide through polymer membranes”, Ind. Eng. Chem. Process Des. Dev., Vol. 19, pp. 609-616, 1980.
[23] Hu X., Tang J., Blasig A., Shen Y. & Radosz M., “CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen”, J. Membr. Sci., Vol. 281, pp. 130-138, 2006.
[24] Li J., Wang S., Nagai K., Nakagawa T. & Mau A.W-H, “Effect of polyethyleneglycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) blend membranes”, J. Membr. Sci., Vol. 138, pp. 143-152, 1998.
[25] Car A., Stropnik Ch., Yave W. & Peinemann K.V., “PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation”, J. Membr. Sci., Vol. 307, pp. 88-95, 2008.
[26] Whelan T., Polymer technology dictionary, 1st ed., Chapman & Hall, UK, 1994.
[27] Damle Sh. & Koros W.J., “Permeation equipment for high-pressure gas separation membranes”, Ind. Eng. Chem. Res., Vol. 42, pp. 6389-6395, 2003.
[28] Patel N.P. & Spontak R.J., “Gas-transport and thermal properties of a microphase-ordered poly(styrene-b-ethylene oxide-b-styrene) Triblock Copolymer and its Blends with Poly(ethylene glycol)”, Macromolecules, Vol. 37, pp. 2829-2838, 2004.
[29] Teplyakov V. & Meares P., “Correlation aspects of the selective gas permeabilities of polymeric materials and membranes”, Gas Sep. Purif., Vol. 4, pp. 66-74, 1990.
[30] Ghosal A.S. & Koros W.J., “Energetic and entropic contributions to mobility selectivity in glassy polymers for gas separation membranes”, Ind. Eng. Chem. Res., Vol. 38, pp. 3647-3654, 1999.
[31] Yampolskii Y., Pinnau I. & Freeman B., Materials science of membranes for gas and vapor separation, John Wiley & Sons Inc., England, 2006.
[32] Lin H. & Freeman B.D., “Gas permeation and diffusion in crosslinked poly(ethylene glycol diacrylate)”, Macromolecules, Vol. 39, pp. 3568-3580, 2006.
[33] Lin H. & Freeman B.D., “Gas solubility, diffusivity and permeability in poly(ethylene oxide)”, J. Membr. Sci., Vol. 239, pp. 105-117, 2004.
[34] Xu Z.K., Xiao L., Wang J.L. & Springer J., “Gas separation properties of PMDA/ODA polyimide membranes filling with polymeric nanoparticles”, J. Membr. Sci., Vol. 202, pp. 27-34, 2002.
[35] Tin P.S., Chung T.S., Liu Y., Wang R., Liu S.L. & Pramoda K.P., “Effect of cross-linking modification on gas separation performance of Matrimid membranes”, J. Membr. Sci., Vol. 225, pp. 7790, 2003.
[36] Robeson L.M., “The upper bound revisited”, J. Membr. Sci., Vol. 320, pp. 390-400, 2008.