کانی‌زایی تبخیری (انیدریت و سلستیت) و تأثیر آن بر کیفیت مخزنی زون‌های دولومیتی سازند آسماری، بخش شمالی فروافتادگی دزفول، جنوب غرب ایران

نویسندگان

1 پردیس پژوهش و توسعه صنایع بالادستی، پژوهشگاه صنعت نفت

2 دانشکده زمین‌شناسی، دانشگاه تهران

چکیده

سازند آسماری، به سن الیگوسن- میوسن زیرین، مهم‌ترین سنگ مخزن هیدروکربوری در جنوب و جنوب غرب ایران محسوب می‌شود. این سازند در میدان مورد مطالعه توالی مخلوطی از نهشته‌های کربناته (غالباً در بخش بالایی) و آواری (غالباً در بخش پایینی) است. بخش کربناته این سازند (به سن میوسن زیرین) که غالباً از رخساره‌های کم‌عمق و پرانرژی سدی و لاگونی تشکیل شده، به شدت متأثر از فرآیندهای دیاژنزی است. مطالعات ماکرومیکروسکوپی همراه با آنالیزهای متداول مغزه و ژئوشیمیایی نشان داد که در افق‌های دولومیتی، ایجاد فضاهای خالی بین بلوری و وجود فضاهای خالی بین‌دانه‌ای اولیه از یک سو و عملکرد فرآیندهای تراکم و کانی‌زایی تبخیری از سوی دیگر باعث تغییرات وسیعی در کیفیت مخزنی شده است. این مطالعه با هدف بررسی تأثیر کانی‌های تبخیری انیدریت و سلستیت بر خواص مخزنی افق‌های دولومیتی سازند آسماری انجام شده است. این پژوهش نشان داد که مقدار و نحوه گسترش کانی‌های تبخیری انیدریت و سلستیت، نقش بسیار مهمی در کنترل کیفیت مخزنی این سازند داشته است. بیشترین و مؤثرترین شکل گسترش انیدریت و سلستیت، اشکال سیمان پرکننده فضاهای خالی، فراگیر، جایگزینی و بعضاً پرکننده شکستگی‌ها بوده است. در برخی نمونه‌ها سیمان تبخیری با اشغال حدود 40% فضاهای بین‌دانه‌ای (در مراحل اولیه تدفین) و بین‌بلوری، تخلخل و تراواییِ افق دولومیتی را به نزدیک صفر کاهش داده است. اشکال نودولی اولیه و ثانویه، با وجود گسترش قابل توجه در همه رخساره‌ها، تأثیری بر کاهش کیفیت مخزنی سازند آسماری نداشته‌اند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Evaporite (Anhydrite and Celestite) Mineralization and its Effect on Reservoir Quality of the Dolostone Intervals of the Asmari Formation, Northern Part of Dezful Embayment, Southwest of Iran

نویسندگان [English]

  • Javad Honarmand 1
  • Abdolhossein Amini 2
  • Mohammad Reza Kamali 1
1 Research Institute of Petroleum Industry, (RIPI), Tehran
2 School of Geology, University of Tehran, (RIPI), Tehran
چکیده [English]

Asmari formation, assigned to Oligocene-Lower Miocene, forms the most important hydrocarbon reservoir in the south and southwest of Iran. In the studied field, Asmari formation constitutes a sequence of carbonate (common at upper part) and clastic (common at lower part) sediments. The carbonate section belonging to early Miocene and being commonly assigned to shallow marine, high energy barrier and lagoon is severely subjected to diagenetic processes. Macro-microscopic studies (core and thin section) along with geochemical and conventional core analysis showed that, in dolostone intervals, the development of intercrystalline pore spaces and the presence of primary interparticle pore spaces on the one hand and the performance of compaction and evaporite mineralization on the other hand caused considerable changes in reservoir quality. This study aimed to investigate the effect of evaporite (anhydrite and celestite) mineralization on the Asmari reservoir properties. This research showed that the quantity and distribution of evaporitic minerals, namely anhydrite and celestite, played a very significant role in controlling the reservoir quality of dolostone intervals. The most common and efficient forms of anhydrite and celestite distribution occur as pore space cement-filling, poikilotopic, replacement, and occasional fracture-filling. Evaporitic cement-filling that occupies about 40% of intergranular (in early burial) and intercrystalline pore spaces, noticed in some samples, have reduced the porosity and permeability of dolostone intervals to nearly zero value. Primary and secondary nodular forms having considerable extent in all facies have not decreased the reservoir quality of Asmari formation.
 

کلیدواژه‌ها [English]

  • anhydrite
  • Celestite
  • Evaporate Minerals
  • Reservoir Quality
  • Asmari Formation
[1]. Nader F. H., Moradpour M., Samani P., Hamon Y., Hosseiny A., Daniel J.M., Moallemi A., and Pickard N., “Diagenesis of the Asmari Formation (Oligo-Miocene, SW Iran): Implications on reservoir modeling of a Giant Oilfield,” 1st International Petroleum Conference, European Association of Geoscientists and Engineers, pp. 4-6, Shiraz, Iran, May 2009.##
[2]. Honarmand J. and Amini A., “Diagenetic processes and reservoir properties in the ooid grainstones of theAsmari Formation,” Cheshmeh Khush Oil Field, SW Iran,” Journal of Petroleum Science and Engineering, Vol. 81, pp. 70-79, 2012.##
[3]. هنرمند ج.، «بررسی عوامل رسوب‌شناسی و دیاژنزی کنترل کننده کیفیت مخزنی سازند آسماری در میدان چشمه خوش»، رساله دکتری، دانشگاه تهران، 310 صفحه، 1391.##
[4]. شب‌افروز ر.، محبوبی ا. و موسوی حرمی س. ر.، «دولومیتی شدن و کانی‌زایی تبخیری‌های سازند ساچون در برش الگو»، جنوب شرق شیراز، مجله بلورشناسی و کانی‌شناسی ایران، جلد 17، شماره 4، صفحات 620-609، 1389.##
[5]. کدخدایی ایلخچی ر.، رحیم‌پور بناب ح.، موسوی حرمی س. ر. و کدخدایی ایلخچی ع.، «فاکتورهای کنترل کننده گسترش بافت‌های مختلف سیمان انیدریت و ارتباط آن با کیفیت مخزنی در مخازن کربناته دالان بالایی و کنگان، میدان پارس جنوبی»، مجله پژوهش‌های چینه‌نگاری و رسوب‌شناسی، سال 27، شماره 42، صفحات 26-1، 1390.##
[6]. ایرانی کورعباس‌لو ب.، موسوی حرمی، س. ر.، محبوبی ا.، کدخدایی ایلخچی ع. و قنواتی ک.، «فاکتورهای کنترل کننده نحوه گسترش بافت‌های مختلف سیمان انیدریت و ارتباط آن با کیفیت مخزنی در سازند آسماری میدان کوپال»، اولین کنفرانس بین‌المللی نفت، گاز، پتروشیمی و نیروگاهی، تهران، خردادماه 1391.##
[7]. کاویانپور سنگنو م.، نامداریان ا.، موسوی حرمی س. ر.، محبوبی ا. و امیدپور ا.، «بررسی نقش بافت انیدریت در زون تولیدی سازند آسماری در میدان منصوری»، مجله علوم زمین، شماره 94، صفحات 236-229، 1393.##
[8]. Dickson J. A. D., “Carbonate identification and genesis as revealed by staining,” Journal of Sedimentary Research, Vol. 36, pp. 491-505, 1966.##
[9]. Gregg J. M. and Sibley D. F., “Epigenetic dolomitization the origin of xenotopic dolomite texture,” Journal of Sedimentary Petrology, Vol. 54, pp. 907-931, 1984.##
[10]. Sibley D. F. and Gregg J. M., “Classification of dolomite rock textures,” Journal of Sedimentary Petrology, Vol. 57, pp. 967-975, 1987.##
[11]. Saller A. H., and Henderson N., “Distribution of porosity and permeability in platform dolomites: Insight from the Permian of West Texas,” American Association of Petroleum Geology Bulletin, Vol. 82, No. 8, pp. 1528-1550, 1998.##
[12]. Land L S., “The origin of massive dolomite”, Journal of Geological Education,” Vol. 33, pp. 112-125, 1985.##
[13]. Gregg J. M. and Shelton K. L., “Dolomitization and dolomite neomorphism in the back reef facies of the Bonneterre and davis formations-cambrian, Southeastern Missouri,” Journal of Sedimentary Petrology, Vol. 60, No. 4, pp. 549-562, 1990.##
[14]. Warren J., “Dolomite: occurrence, evolution and economically important,” association, Earth-Sciences Reviews, Vol. 52, pp.1-81, 2000.##
[15]. Ehrenberg S. N., Eberli G. P., Keramati M., and Moallemi S. A., “Porosity-permeability relationships in interlayered limestone-dolostone reservoirs,” American Association of Petroleum Geology Bulletin, Vol. 90, No. 1, pp. 91-114, 2006.##
[16]. Lucia F. J., “Carbonate reservoir characterization: an integrated approach,” Springer-Verlag, 336 pp, 2007.##
[17]. Rahimpour-Bonab H., Esrafili-Dizaji B., and Tavakoli V., “Dolimitization and anhydrite precipitation in permo-triassic carbonates at the South Pars gas field, offshore Iran: controls on reservoir quality,” Journal of Petroleum Geology, Vol. 33, pp. 1 – 24, 2010.##
[18]. Srinivasan K., Walker K. R., and Goldberg S. A., “Determinig fluid source and possible pathways during burial dolomitization of Maryville limestone (cambrian), Southern Appalachians,” USA, Sedimentology, Vol. 41, pp. 293-308, 1994.##
[19]. Adabi M. H., “Multistage dolomitization of upper jurassic Mozduran formation,” Kopet- Dagh Basin, N. E. Iran, Carbonates and Evaporites, Vol. 24, pp. 16-32, 2009.##
[20]. Orbell G., “Geothermal gradient map,” Oil Service Company of Iran (OSCO), Exploration Division, 1977.##
[21]. Kendall A. C. and Walters K. L., “The age of metasomatic anhydrite in Mississippian reservoir carbonates, southeastern Sasketchewan,” Canadian Journal of Earth Sciences, Vol. 15, pp. 424-430, 1977.##
[22]. Gundogan I., Mehmet O., and Tolga D., “Sedimentology, petrography and diagenesis of EoceneOligocene evaporites: the tuzhisar formation, SW Sivas Basin, Turkey,” Journal of Asian Earth Sciences, Vol. 25, pp.791–803, 2005.##
[23]. Machel H. G., “Early lithification, dolomitisation and anhydritization of upper devonain Nisku buildups,” subsurface Alberta, Canada, in J. H. Schroeder and B. H. Purser, eds., Reef diagenesis: Berlin, Springer-Verlag, pp. 336–356, 1986.##
[24]. Kendall A. C., “Aspects of evaporate basin stratigraphy, In: evaporites and hydrocarbons,” (Ed. By B. C. Schreiber), Columbia University Press, pp. 11-65, 1988.##
[25]. Jacobsen S. D., Smyth J. R., Swope R. J., and Downs R. T., “Rigid-body character of the SO4 groups in celestine, anglesite, and barite,” Canadian Mineralogy, Vol. 36, pp. 1053–1060, 1998.##
[26]. Hanor J. S., “A model for the origin of large carbonate- and evaporate-hosted Celestine deposits,” Journal of Sedimentary Research, Vol. 74, pp. 168-175, 2004.##
[27]. Ehya F., Shakouri B. and Rafi M., “Geology, mineralogy and isotope (Sr, S) geochemistry of the Likak celestite deposit, SW Iran,” Carbonates Evaporites, DOI 10.1007/s13146-013-01376, 2013.##
[28]. نژادحداد م. و آفتابی آ.، «الگوی کانسارسازی کانسارهای سلستیت با استفاده از شواهد زمین‌شناسی، ساختی، بافتی و ژئوشیمیایی در تاقدیس بنگستان، بهبهان، اهواز»، مجله علوم دانشگاه تهران، جلد 36، شماره 1، صفحات 167- 157، 1389.##
[29]. Warren J. K., “Evaporites: sediments, resources and hydrocarbons,” Springer-Verlag, Brunei, pp.1035, 2006.##