تهیه غشاهای شبکه آمیخته بر پایه پلی‌وینیل کلراید و سلولز استات پرشده با نانولوله‌های کربنی در جداسازی گازهای CO2ا، CH4 و N2

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه اراک

چکیده

در این پژوهش، غشاهای شبکه آمیخته پلی وینیل کلراید- نانولوله‌های کربنی (PVC/MWCNTs) و سلولزاستات– نانولوله‌های کربنی (CA/MWCNTs) تهیه شد و به منظور بررسی خواص جداسازی گاز، مورد ارزیابی قرار گرفت. برای این منظور هر دو نوع نانولوله‌های کربنی بدون عامل و عامل‌دار (با عامل کربوکسیلیک) مورد استفاده قرار گرفت. در نهایت مشخص شد که نانولوله‌های عامل‌دار، عملکرد بهتری دارند. اثر افزایش محتوای نانولوله‌های کربنی بر عملکرد جداسازی گاز غشاهای تهیه شده برای گازهای هلیم، نیتروژن، متان و دی‌اکسید‌کربن مورد بررسی قرار گرفت. نتایج به دست آمده نشان می‌دهد تراوایی گازها با افزایش محتوای نانولوله‌های کربنی، افزایش می‌یابد. تراوایی دی‌اکسید‌کربن نسبت به سایر گازهای مورد مطالعه، افزایش بیشتری دارد و در 1% وزنی از نانولوله‌های کربنی عامل‌دار، برای غشاهای شبکه آمیخته شامل PVC به barrer 48/11 و برای غشاهای شبکه آمیخته شامل CA در 5% وزنی از نانولوله های کربنی به barrer 21/14 رسیده است. علاوه بر این، گزینش‌پذیری CO2/CH4 به‌طور کلی نتایج بهتری را در پی داشته و در 3% وزنی از نانولوله‌های کربنی عامل‌دار، در غشاهای تهیه شده بر پایه PVC به بیشترین مقدار خود (حدود barrer 76/52) رسید. همچنین نتایج آزمون مقاومت مکانیکی نشان می‌دهد که استفاده از غشاهای شبکه آمیخته بر پایه PVC، خواص مکانیکی مطلوب‌تری دارد
 

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication of PVC/CA -based Mixed Matrix Membranes Filled with Multiwalled Carbon Nanotubes for CO2, CH4, and N2 Gases Separation

نویسندگان [English]

  • Zahra Rajabi
  • Abdolreza Moghadassi
  • Maryam Mohammadi
  • Sayed Mohsen Hosseini
Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak
چکیده [English]

PVC/MWCNT’s and CA/MWCNT’s mixed matrix membranes (MMM’s) were prepared. These membranes were characterized for the investigation of gas separation properties. For this reason, both raw and functionalized multiwalled carbon nanotubes (MWCNT’s) were used. At last, it is understood that membranes filled with functionalized MWCNT’s had better performance. The effects of MWCNT’s loading ratio were investigated on the gas separation performance of the prepared membranes for He, N2, CH4, and CO2 gases. The results represented that all gases permeability had an increasing manner with increasing the nanofiller loading ratio. CO2 permeability were more increased and at 1 wt.% of MWCNT’s for MMM’s based on PVC, and at 5 wt.% of MWCNT’s for MMM’s based on CA, this value reaches 11.48 and 14.21 respectively. Moreover, CO2/CH4 gas separation selectivity showed better results and at 3 wt.% of MWCNT’s reaches its maximum value (52.76). Also, the results of mechanical resistance analysis represented that MMM’s based on PVC have better mechanical properties than MMM’s based on CA
 

کلیدواژه‌ها [English]

  • Mixed Matrix Membranes
  • Gas Separation
  • Carbon Nanotubes
  • Permeability
  • Selectivity
  • Mechanical Properties
[1]. Iarikova D. D., Hacarlioglua P., and Oyama S. T., “Supported room temperature ionic liquid membranes for CO2/CH4 separation,” Chemical Engineering Journal, Vol. 166, pp. 401–406, 2011.##
[2]. Powell C. E. and Qiao G. G., “Polymeric CO2 /N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases,” J. Membr. Sci., Vol. 279, pp. 1-49, 2006.##
[3]. Cavenati S., Grande C. A., and Rodrigues A. E., “Separation of CH4 /CO2 /N2 mixtures by layered pressure swing adsorption for upgrade of natural gas,” Chemical Engineering Science, Vol. 61, pp. 3893–3906, 2006.##
[4]. Li L. and Chung T. S., “Silver ionic modification in dual-layer hollow fiber membranes with significant enhancement in CO2 /CH4 and O2 /N2 separation,” Journal of Membrane Science, Vol. 350, pp. 226–231, 2010.##
[5]. Baker R. W., “Future directions of membrane gas separation technology,” Ind. Eng. Chem. Res. Vol. 41, pp. 1393–1411, 2002.##
[6]. Mirfendereski S. M., Mazaheri T., Sadrzadeh M., and Mohammadi T., “CO2 and CH4 permeation through T-type zeolite membranes: Effect of synthesis parameters and feed pressure,” Separation and Purification Technology, Vol. 61, pp. 317–323, 2008.##
[7]. Atchariyawut S., Jiraratananon R., Wang R., “Separation of CO2 from CH4 by using gasliquid membrane contacting process,” Journal of Membrane Science, Vol. 304, pp. 163–172, 2007. [8]. Xing R. and Winston Ho W. S., “Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for CO2/CH4 separation,” Journal of the Taiwan Institute of Chemical Engineers, Vol. 40, pp. 654–662, 2009.##
[9]. Saimani S., Mauro M. D, Kumar A., and Kingston M. D., “Separation performance of asymmetric membranes based on PEGDa/PEI semi-interpenetrating polymer network in pure and binary gas mixtures of CO2, N2 and CH4,” Journal of Membrane Science, Vol. 362, pp. 353–359, 2010.##
[10]. Pourafshari Chenar M. Soltanieh M., Matsuura T., Tabe-Mohammadi A., and Khulbe K. C., “The effect of water vapor on the performance of commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes in CO2 /CH4 separation applications,” Journal of Membrane Science, Vol. 285, pp. 265–271, 2006.##
[11]. Nath K., Membrane separation procesesses, New Delhi, 2008.##
[12]. Pandey P., Chauhan R. S., “Membranes for gas separation,” Prog. Polym. Sci., Vol. 26, pp. 853-893, 2001.##
[13]. Hosseini S. S. and Chung T. S., “Carbon membranes from blends of PBI and polyimides for N2 /CH4 and CO2 /CH4 separation and hydrogen purification,” Journal of Membrane Science, Vol. 328, pp. 174–185, 2009.##
[14]. Kumar Sen S. and Banerjee S., “Gas transport properties of fluorinated poly (ether imide) films containing phthalimidine moiety in the main chain,” Journal of Membrane Science, Vol. 350, pp. 53–61, 2010.##
[15]. Huang S. H., Hu C. C., Lee K. R., Liaw D. J., and Lai J. Y., “Gas separation properties of aromatic poly(amide-imide) membranes,” European Polymer Journal, Vol. 42, pp. 140–148, 2006.##
[16]. Albrecht W., Kneifel K., Weigel Th., Hilke R., Just R., Schossig M., Ebert K., and Lendlein A., “Preparation of highly asymmetric hollow fiber membranes from poly(ether imide) by a modified drywet phase inversion technique using a triple spinneret,” J. Membr. Sci., Vol. 262, pp. 69–80,2005.##
[17]. Park H. B., Kim J. Sang K., Nam Y., Moo Lee Y., “Imide-siloxane block copolymer/silica hybrid membranes: preparation, characterization and gas separation properties,” Journal of Membrane Science Vol. 220, 59–73, 2003.##
[18]. Cong H., Radosz M., Towler M. F., Shen Y., “Polymerinorganic nanocomposite membranes for gas separation,” Separation and Purification Technology, Vol. 55, pp. 281–291, 2007.##
[19]. Koros W. J., Mahajan R., “Pushing the limits on possibilities for large scale gas separation: which strategies,” J. Membr. Sci., Vol. 175, pp. 181, 2000.##
[20]. Bernardo P., Drioli E., and Golemme G., “Membrane gas separation: a review/state of the art,” Ind. Eng. Chem. Res., Vol. 48, pp. 4638–4663, 2009.##
[21]. Manchado M. A. L., Valentini L., Biagiotti J., and Kenny J. M., “Thermal and mechanical properties of single-walled carbon nano tubes-polypropylene composites prepared by melt processing,” Carbon, Vol. 43, pp. 1499, 2005.##
[22]. Coleman J. N., Khan U., and Gun’ko Y. K., “Mechanical reinforcement of polymers using carbon nanotubes,” Adv. Mater., Vol. 18, pp. 689, 2006.##
[23]. Hinds B. J., Chopra N., Rantell T., Andrews R., Gavalas V., and Bachas L. G., “Aligned multi walled carbon nanotube membranes,” Science 303, pp. 62–65, 2004.. [24]. Kim S., Pechar T. W., and Marand E., “Poly (imide siloxane) and carbon nanotube mixed matrix membranes for gas separation,” Desalination, Vol. 192, pp. 330–339, 2006.##
[25]. Aroon M. A., Ismail A. F., Montazer-Rahmati M. M., and Matsuura T., “Effect of chitosan as a functionalization agent on the performance and separation properties of polyimide/multi-walled carbon nanotubes mixed matrix flat sheet membranes,” Journal of Membrane Science, Vol. 364, pp. 309-317, 2010.##
[26]. Schell W. J., “Cellulose acetate membranes for CO2 /CH4 separation,” ACS Div. Fuel Chem. Preprints, Vol. 20, pp. 253, 1975.##
[27]. Marchese J., Garis E., Ansona M., Ochoa N. A., and Pagliero C., “Gas sorption, permeation and separation of ABS copolymer membrane,” J. Membr. Sci., Vol. 221, pp. 185–197, 2003.##
[28]. Li J., Wang S., Nagai K., Nakagava T., and Mau A. W., “Effect of polyethyleneglycol (PEG) on gas permeabilities and permselectivities in its Cellulose acetate (CA) blend membranes,” Journal of Membrane Science, Vol. 138, pp. 143-152, 1998.##
[29]. Hosseini S. M., Madaenia S. S., Khodabakhshia A. R., and Zendehnam A., “Preparation and surface modification of PVC/SBR heterogeneous cation exchange membrane with silver nanoparticles by plasma treatment,” Journal of Membrane Science, Vol. 365, pp. 438–446, 2010.##
[30] Cong H., Zhang J., Radosz M., and Shen Y., “Carbon nanotube composite membranes of brominated poly (2,6-diphenyl-1,4-phenylene oxide) for gas separation,” Journal of Membrane Science, Vol. 294, pp. 178–185, 2007.##
[31] Kuznetsova A., Liu J., Yates J.T., Liu J., and Smalley R. E., “Physical adsorption of xenon in open single walled carbon nanotubes: observation of a quasi-one-dimensional confined Xe phase,” J. Chem. Phys., Vol. 112, pp. 9590, 2000.##
[32]. Chung T. S., Jiang L. Y., L. Y., and Kulprathipanja S., “Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation,” Prog. Polym. Sci. Vol. 32, pp. 483–507, 2007.##
[33] Yin X., Wang J., Chu N., Yang J., Lu J., Zhang Y., and Yin D., “Zeolite L/carbon nanocomposite membranes on the porous alumina tubes and their gas separation properties,” Journal of Membrane Science, Vol. 348, pp. 181–189, 2010.##
[34] Ismail A. F., Goh P. S., Sanip S. M., and Aziz M., “Transport and separation properties of carbon nanotube-mixed matrix membrane,” Separation and Purification Technology, Vol. 70, pp. 12–26, 2009.##
[35] Kim T. H., “Gas sorption and permeation in a series of aromaticpolyimides,” Ph.D. Thesis, The University of Texas, Austin, 1988.##
[36] Kim S., Chen L., Johnson J. K., and Marand E., “Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment,” Journal of Membrane Science, Vol. 294, pp. 147–158, 2007.##
[37] Kuznetsova A., Mawhinney D. B., Naumenko V., Yates J. T., Liu J., and Smalley R. E., “Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports,” Chem. Phys. Let., Vol. 321, pp. 292, 2000.##
[38] Pechar T. W., Kim S., Vaughan B., Marand E., Tsapatsis M., Jeong H. K., and Cornelius C. J., “Fabrication and characterization of polyimide-zeolite L mixed matrix membranes for gas separations,” J. Membr. Sci., Vol. 277, pp. 195, 2006.##