تهیه و ارزیابی غشاهای شبکه آمیخته پلی وینیل کلراید-نانوذرات اکسیدروی به منظور جداسازی CO2 /N2 ،ا CO2/CH4 و N2/CH4

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه اراک، دانشکده فنی و مهندسی، گروه مهندسی شیمی

چکیده

در این پژوهش غشاهای شبکه آمیخته پلی وینیل کلراید- نانوذرات اکسیدروی تهیه شده و به منظور بررسی خواص جداسازی گاز، مورد ارزیابی قرار گرفتند. اثر افزایش اکسید روی و نیز فشار خوراک بر عملکرد جداسازی گاز این غشاها برای گازهای هلیم، نیتروژن، متان و دی اکسید کربن مورد بررسی قرار گرفت. نتایج به دست آمده نشان می‏دهد که تراوایی همه گازها با افزایش نانوذرات اکسیدروی روند افزایشی داشته است. تراوایی گازهای هلیم، متان، دی اکسید کربن و نیتروژن در غشاهای شبکه آمیخته حاوی 15% وزنی اکسید روی در فشار bar 8، به ترتیب از 56/3، 007/0، 21/0 و 01/0 به 9/49، 12، 4/26 و 6/1 نسبت به غشاهای بدون نانو ذرات افزایش یافته است. همچنین، تراوایی هر یک از گازهای مورد مطالعه با افزایش فشار خوراک ورودی، افزایش یافته و انتخاب پذیری جفت‏های گازی مذکور با افزایش فشار، روند ‌کاهشی را دنبال کرده است. نتایج آزمون مقاومت مکانیکی نشان می‏دهد که استفاده از نانوذرات اکسید روی در ساختار غشا توانسته است مدول کششی را به میزان 11% بهبود دهد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Preparing and Characterizing PVC/ZnO Nanoparticle Mixed Matrix Membranes for CO2/N2, CO2/CH4, and N2/CH4 Gas Separation

نویسندگان [English]

  • Maryam Mohammadi
  • Zahra Rajabi
  • Abdolreza Moghadassi
  • Seyed Mohsen Hoseyni
Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
چکیده [English]

PVC/ZnO mixed matrix membranes were prepared and characterized for gas separation properties. The effects of ZnO loading ratio and feed pressure on the gas separation performance of the prepared membranes were investigated. Testing gases were He, N2, CH4, and CO2. The results indicated that the permeability of all the gases increased with an increase in ZnO loading ratio. At a ZnO loading ratio of 15% and a pressure of 8 bar, the permeability of He, N2, CH4, CO2 increased from 3.56, 0.01, 0.007, 0.21 to 49.9, 1.6, 12, 26.4 respectively. Moreover, the permeability of the studying gases showed an increasing manner. The selectivity of pair gases (CO2/N2), (CO2/CH4), and (N2/CH4) decreased with an increase in feed pressure. Furthermore, the mechanical properties analysis of the prepared membranes showed that the presence of ZnO nanoparticles in membrane structure night improve tensile module.
 

کلیدواژه‌ها [English]

  • Mixed Matrix Membranes
  • Polyvinyl Chloride
  • ZnO Nanoparticles
  • Gas Separation
  • Permeability
  • Selectivity
  • Feed Pressure
[1]. Hosseini S, Shung Chung T, “Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification”, Journal of Membrane Science, Vol. 328, PP. 174–185, 2006.
[2]. Sen S, Banerjee S, “Gas transport properties of fluorinated poly (ether imide) films containing phthalimidine moiety in the main chain”, Journal of Membrane Science, Vol. 350, PP. 53–61, 2010.
[3]. Huang S. H, Hu C, Lee K. R, Liaw D. J and Lai J. Y, “Gas separation properties of aromatic poly (amide-imide) membranes”, European Polymer Journal, Vol. 42, PP. 140–148, 2006.
[4]. Zhang Y, J. Balkus K, Musselman I. H and P. Ferraris J, “Mixed-matrix membranes composed of Matrimid® and mesoporous ZSM-5 Nanoparticles”, Journal of Membrane Science, Vol. 325, PP. 28–39, 2008.
[5]. Robeson L.M., “The upper bound revisited”, J. Membr. Sci. Vol. 320, pp. 90–400, 2008.
[6]. Sen S, Dasgupta B and Banerjee B, “Effect of introduction of heterocyclic moieties into polymer backbone on gas transport properties of fluorinated poly (ether imide) membranes”, Journal of Membrane Science, Vol. 343, PP. 97–103, 2009.
[7]. Fang J., Kita H. and Okamoto K. I., “Gas permeation properties of hyperbranched polyimide membranes”, J. Membr. Sci., Vol 182, PP. 254–256, 2001.
[8]. Lin H., Wagner E. V., Raharjo R., Freeman B. D. and Roman I, “Highperformance polymer membranes for natural-gas sweetening”, Adv. Mater., Vol. 18, PP. 39–44, 2006.
[9]. Ahn J., Chung W. J., Pinnau I. and Guiver M. D., “Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation”, Journal of Membrane Science, Vol. 314, PP. 123–133, 2008.
[10]. Kim S., Pechar T. W., Marand E., “Poly (imide siloxane) and carbon nanotube mixed matrix membranes for gas separation”, Desalination, Vol. 192, PP. 330–339, 2006.
[11]. Kim S. and Marand S., “High permeability nano-composite membranes based on mesoporous MCM-41 nanoparticles in a polysulfone matrix”, Microporous and Mesoporous Materials, Vol. 114, PP. 129–136, 2008.
[12]. Patel N. P., Miller A. C. and Spontak R. J., “Highly CO2-permeable and selective membrane derived from crosslinked poly (ethylene glycol) and its nanocomposites”, Adv. Funct. Mater., Vol. 14, PP. 699–707, 2004.
[13]. Hosseini S. S., Li Y., Chung T. S. and Liu Y, “Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles”, Journal of Membrane Science, Vol. 302, PP. 207–217, 2007.
[14]. Bum Park H., Ki Kim J., Yong Nam S. and Moo Lee Y., “Imide-siloxane block copolymer/silica hybrid mem
branes: preparation”, characterization and gas separati,on properties, Journal of Membrane Science Vol. 220, pp. 59–73, 2003.[15]. Cong H., Radosz M., Towler M. F. and Shen Y., “Polymer–inorganic nanocomposite membranes for gas separation”, Separation and Purification Technology, Vol. 55, PP. 281–291, 2007.
[16]. Gomes D., Nunes S. P. and Peinemann K. V., “Membranes for gas separation based on poly (1-trimethylsilyl-1-propyne)–silica nanocomposites”, Journal of Membrane Science, Vol. 246, PP. 13–25, 2005.
[17]. Breck D. W., Zeolite Molecular Sieves, Wiley, New York, NY, 1974. 
[18]. Funk C. V. and Lloyd D. R., “Zeolite-filled microporous mixed matrix (ZeoTIPS) membranes: Prediction of gas separation performance”, Journal of Membrane Science, Vol. 313, PP. 224–231,2008.
[19]. Zeng C., Zhang L., Cheng X., Wang H. and Xu N., “Preparation and gas permeation of nano-sized zeolite NaA-filled carbon membranes”, Separation and Purification Technology, Vol. 63, PP. 628–633, 2008.
[20]. Rong M. Z., Zhang M. Q., Zheng Y. X., Zeng H. M., Walter R. and Friedrich K., “Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites”, Polymer,Vol. 42, PP. 167–183, 2001.
[21]. Sairam M., Patil M. B., Veerapur R. S., Patil S. A. and Aminabhavi T. M., “Novel dense poly (vinyl alcohol)–TiO2 mixed matrix membranes for pervaporation separation of water–isopropanol mixtures at 30 C”, J. Membr. Sci.,Vol. 281, PP. 95–102, 2006.
[22]. Zhang Y., Li J., Lin J., Li R. and Liang X., “Preparation and characterization of zirconium oxide particles filled acrylonitrile–methyl acrylate–sodium sulfonate acrylate copolymer hybrid membranes”, Desalination, Vol. 192, PP. 198–206, 2006.
[23]. Wang Y., Zhang Ch., Bi S. and Luo G., “Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor”, Powder Technology, Vol. 202, 130–136, 2010.
[24]. Shao C. H., Jiang A. X., Yan B., Li F. and Zhou B. B., “Research on the process condition of low temperature desulfur of nanocrystalline ZnO”, Materials Science and Technology, Vol. 13 PP. 407–410, 2005.
[25]. Xiong M., Gu G., You B. and Wu L., Journal of Applied Polymer Science, Vol. 90, 1923, 2003.
[26]. Li L. H., Deng J. C., Deng H. R., Liu Z. L. and Xin L., “Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes”, Carbohydrate Research, Vol 345, PP. 994–998, 2010.
[27]. Sharma B. K., Khare N., Dhawan S. K. and Gupta H. C., “Dielectric properties of nano ZnO-polyaniline composite in the microwave frequency range”, Journal of Alloys and Compounds, Vol. 477, PP. 370–373, 2009.
[28]. Kesting R. E. and Fritzsche A. K. Polymeric Gas Separation Membranes; Wiley: New York, 1993.    
[29]. Hosseini S. M., Madaenia S. S., Khodabakhshi A. R. and Zendehnam A., “Preparation and surface modification of PVC/SBR heterogeneous cation exchange membrane with silver nanoparticles by plasma treatment”, Journal of Membrane Science, Vol. 365, PP. 438–446, 2010.
[30]. Barrer R. M., Diffusion in Polymers, Academic Press, New York, 1968.
[31]. Merkel T. C., Freeman B. D., Spontak R. J., He Z., Pinnau I., Meakin P. and et al., “Ultrapermeable, reverse-selective nanocomposite membranes”, Science, Vol. 296, 19-22, 20.
[32]. Mahajan R., Formation, characterization and modeling of mixed matrix membrane materials, PhD thesis. Univeristy of Texas at Austin, 2000.
[33]. Chunga T. S., Jiang L. Y., Li Y. and Kulprathipanja S., “Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation”, Prog. Polym. Sci., Vol. 32, PP. 483–507, 2007.
[34]. Baker R. W., Membrane Technology and Applications, 2nd ed., John Wiley & Sons, Ltd., Chichester, 2004.
[35]. Tanaka T., Kozako M., Fuse N. and Ohki Y., IEEE Trans. Dielectr. Electr, Vol. 12, 2005.
[36]. Lin W. H. and Chung T. H., “Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes”, Journal of Membrane Science, Vol. 186, PP. 183–193, 2001.
[37]. Mousavi S. A., Sadeghi M., Motamed-Hashemia M., Pourafshari Chenar M., Roosta-Azad R. and Sadeghi M., “Study of gas separation properties of ethylene vinyl acetate (EVA) copolymer membranes prepared via phase inversion method”, Separation and Purification Technology, Vol. 62, PP. 642–647, 2008.
[38]. van den Bergh J., Zhu W., Gascon J., Moulijn J. A. and Kapteijn F., “Separation and permeation characteristics of a DD3R zeolite membrane”, Journal of Membrane Science, Vol. 316, PP. 35–45, 2008.
[39]. Marchese J., Garis E., Ansona M., Ochoa N. A. and Pagliero C., “Gas  sorption, permeation and separation of ABS copolymer membrane”, J. Membr. Sci., Vol. 221, PP. 185–197, 2003.
[40]. Koros W. J., Paul D. R. and Rocha A. A., “Carbon dioxide sorption and transport in polycarbonate”, J. Polym. Sci.: Polym. Phys., Vol. 14, PP. 687, 1976.
[41]. Bird R. B., Stewart W. E. and Lightfoot E. L., Transport phenomena, 2nd ed. NewYork: John Wiley and Sons; 2002.
[42]. Ismail A. F. and Yaacob N., “Performance of treated and untreated asymmetric polysulfone hollowfiber membrane in series and cascade module configurations for CO2/CH4 gas separation system”, Journal of Membrane Science, Vol. 275, PP. 151–165, 2005.
[43]. Takahashi a,b S., Paul D. R., “Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 1: Without chemical coupling to matrix”, Polymer, Vol. 47, PP. 7519-7534, 2006.
[44]. Kim S., Chen L., Johnson J. K. and Marand E. “Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment”, J Memb Sci, Vol. 294, PP. 147–158, 2007.