مدل‌سازی سینتیکی واکنش شکست ایزو بوتان بر روی کاتالیست زئولیتی HZSM-5

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی شریف، دانشکده مهندسی شیمی و نفت

2 شرکت ملی پتروشیمی ایران، شرکت پژوهش و فناوری پتروشیمی

چکیده

در این تحقیق، یک مدل سینتیکی یکپارچه برای شکست ایزوبوتان بر روی کاتالیست HZSM-5ا (SiO2/Al2O3=484) پیشنهاد شده است. آزمایش‌ها در بازه دمایی 470 تا C° 530 و فشار کل kPa 104 در یک راکتور بستر ثابت انجام شده است. در شرایط آزمایش، فشار جزئی ایزو بوتان برابر kPa  20 می‌باشد. در این آزمایش‌ها از نیتروژن برای رقیق کردن ایزوبوتان و رسیدن به زمان ماند مورد نظراستفاده شد. به علت ساده بودن طیف محصولات تولیدی، مزیت مدل یکپارچه پیشنهادی کم بودن تعداد واکنش‌ها (6 واکنش) و تعداد کم اجزاء یکپارچه شامل متان، ایزو بوتان، پارافین‌ها، الفین‌ها و ترکیبات سنگین می‌باشد. پارامترهای سینتیکی معادلات سرعت در مدل پیشنهادی یکپارچه از می‌نیمم کردن اختلاف بین نتایج مدل و داده‌های تجربی به دست‌آمده است. مقدار کم این اختلاف که برابر 0118/0 بود، نشان می‌دهد که مدل پیشنهادی متشکل از این ترکیبات یکپارچه، می‌تواند به خوبی داده‌های به‌دست آمده از نتایج آزمایشگاهی را پیش‌بینی نماید. همچنین آنالیزهای آماری مدل سینتیکی، معناداری و صحت پارامترهای به‌دست آمده را تایید می‌کند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Kinetic Modeling of i-Butane Cracking on an HZSM-5 Zeolite Catalyst

نویسندگان [English]

  • Gholamreza Roohollahi 1
  • Mohammad Kazemeini 1
  • Alireza Mohammadrezaee 2
  • Reza Golhoseini 2
1 Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
2 Petrochemical Research and Technology Company, National Petrochemical Company, Tehran, Iran
چکیده [English]

A lumped kinetic model is proposed for i-butane cracking over an HZSM-5 zeolite catalyst (SiO2/Al2O3=484) and the experiments were carried out in a fixed bed reactor in the broad range of temperature of 470-530 °C and at a partial pressure of 20 kPa for i-butane and a total pressure of 104 kPa. Nitrogen was utilized in the experiments for adjusting the partial pressure of hydrocarbon feed and desired feed contact time. Due to the simple product distribution of i-butane cracking reaction, the proposed lumped kinetic model only consisted of 6 reaction steps and 5 lumped compounds including methane, i-butane, paraffins, olefins, and heavy components. The kinetic parameters of rate equations were obtained through the minimization of error objective function and the results indicated that the proposed model could predict the experimental data quite well. Finally, the statistical analysis of the kinetic model confirmed the validity of the model and the significance of the optimized values of the kinetic constants.
 

کلیدواژه‌ها [English]

  • Keywords: i-butane
  • Lumped Kinetic Modeling
  • HZSM-5
  • Catalytic Cracking
[1]. Ladwig P. K., Asplin J. E., Stuntz G. F., Wachter W. A. and Henry B. E., U.S. Patent: 6069287, 2000.
[2]. Zhua X., Liua S., Songa Y. and Xu L., “Catalytic cracking of C4 alkenes to propene and ethene: Influences of zeolites pore structures and Si/Al ratios”, App Catal A: Gen., Vol. 288, No. 2-1, pp134-142., 2005.
[3]. Caeiro G., Carvalho R. H., Wang X., Lemos M., Lemos F., Guisnet M. and Ribeiro F. R., “Activation of C2–C4 alkanes over acid and bifunctional zeolite catalysts”, J Mol Catal A Chem., Vol. 255, pp. 131–158, 2006.
[4]. Mier D., Aguayo A. T., Gayubo A. G., Olazar M. and Bilbao J., “Kinetic modeling of n-butane cracking on HZSM-5 zeolite catalyst”, Ind Eng Chem Res., Vol. 49, pp. 8415–8423, 2010.
[5]. Mier D., Aguayo A. T., Gayubo A. G., Olazar M. and Bilbao J., “Synergies in the production of olefins by combined cracking of n-butane and methanol on a HZSM-5 Zeolite Catalyst”, Chem Eng J., Vol. 160, pp. 760–769, 2010.
[6]. Mier D., Aguayo A. T., Gayubo A. G., Olazar M. and Bilbao J., “Catalyst discrimination for olefin production by coupled methanol/n-Butane cracking”, Appl Catal A: Gen., Vol. 383, pp. 202–210, 2010.
[7]. Mier D., Aguayo A. T., Gayubo A. G., Olazar M. and Bilbao J., Olefin Production by Co-feeding Methanol and n-Butane: Kinetic Modeling Considering the Deactivation of HZSM-5 Zeolite, AIChE J, accepted, 2010.
[8]. Collins S. J . and O'Malley P. J., “A theoretical description for the monomolecular cracking of C-C bonds over acidic zeolites”, J Catal., Vol. 153, pp. 94-99,1995.
[9]. Krannila H., Haag W. O. and Gates B. C., “Monomolecular and bimolecular mechanisms of paraffin cracking: n-butane cracking catalyzed by HZSM-5”, J Catal.; Vol. 135, pp. 115-124, 1992.
[10]. Shigeishi R., Garforth A., Harris I. and Dwyer J., “The conversion of butanes in HZSM-5”, J Catal, Vol. 130, pp. 423-439, 1991.
[11]. Narbeshuber T. F., Vinek H. and Lercher J. A., “Monomolecular conversion of light alkanes over H-ZSM-5”, J Catal, Vol. 157,  pp. 311-395, 1995.
[12]. Ono Y. and Kanae K., “Transformation of butanes over ZSM-5 zeolites”, J Chem Soc Faraday Trans., Vol. 87, pp. 663-667,1991.
[13]. Bizreh Y. W. and Gates B. C., “Butane cracking catalyzed by the zeolite H-ZSM-5”, J Catal, Vol. 88, pp. 240-243, 1984.
[14]. Wakui K., Satoh K. and Sawada G., “Cracking of n-butane over alkaline earth-containing HZSM-5 catalysts”, Catal Lett., Vol. 84, No. 3-4, pp. 259-264, 2002.
[15]. Wakui K., Satoh K., Sawada G., Shiozawa K., Matano K. and Suzukiu K., “Dehydrogenative Cracking of n-butane Using Double-stage Reaction”, Appl Catal A: Gen., Vol. 230, pp. 195-202, 2002.
[16]. Nguyen H., Vazhnova T., Kolaczkowski S. T. and Lukyanov D. B., “Combined experimental and kinetic modeling studies of the pathways of propane and n-butane aromatization over H-ZSM-5 catalyst”, Chem Eng Sci., Vol. 61, No. 17, pp. 5881-5894, 2006.
[17]. Pinto R. R., Borges P., Lemos A., Lemos F. and Ribeiro F. R., “Kinetic modeling of the catalytic cracking of n-hexane and n-heptane over a zeolite catalyst”, App Catal A: Gen., Vol. 272, pp. 23-28, 2004.
[18]. Lukyanov D. B., Gnep N. S. and Guisnet M. S., “Kinetic modeling of ethene and propene aromatization over HZSM-5 and GaHZSM-5”, Ind Eng Chem Res., Vol. 33, pp. 223-234, 1994.
[19]. Lukyanov D. B., Gnep N. S. and Guisnet M. S., “Kinetic modeling of propane aromatization reaction over HZSM-5 and GaHZSM-5”, Ind Eng Chem Res., Vol. 34, pp. 516-523, 1995.
[20]. Lukyanov D. B., “Development of kinetic models for reactions of light hydrocarbons over ZSM-5 catalysts. Experimental studies and kinetic modeling of ethene transformation and deactivation of HZSM-5 catalyst, Stud”, Surf Sci Catal., Vol. 122, pp. 299-306, 1999.
[21]. Lukyanov D. B., “Application of a kinetic model for investigation of aromatization reactions of light paraffins and olefins over HZSM-5”, Stud Surf Sci Catal., Vol. 105, pp. 1301-1308, 1997.
[22]. Mohammadrezaee A. and Asadi M., “Aluminosilicate Catalyst for Preparation of Propylene Via Methanol”, CA Patents: 2622455A1, 2009.
[23]. Shampine L. F. and Gordon M. K., “Computer Solution of Ordinary Differential Equations: the Initial Value Problem”, San Francisco, WH Freeman, 1975.
[24]. Gayubo A. G., Alonso A., Valle B., Aguayo A.T. and Bilbao J., “Deactivation Kinetics of a HZSM-5 Zeolite Catalyst Treated with Alkali for the Transformation of Bio-Ethanol into Hydrocarbons”, AIChE J, accepted, 2011.
[25]. Marquardt F. W., “An algorithm for least-squares estimation of nonlinear parameters”, J Soc Ind Appl Math., Vol. 11, pp. 431-441, 1963.
 [26]. Kittrell J. R., Mezaki R. and Watson C. C., “Estimation of parameters for nonlinear least squares analysis”, Ind Eng Chem., Vol. 57, pp. 19-27, 1965.
[27]. Agarwal A. K. and Brisk M. L., “Sequential experimental design for precise parameter estimation”, 1. Use of re-parametrization, Ind Eng Chem Process Des Dev., Vol. 24, pp. 203-207, 1985.
[28]. Brook R. J. and Arnold G. C., “Applied regression analysis and experimental design”, CRC Press, pp. 48–49, 1985.
[29]. Montgomery D. C. and Runger G. C., “Applied statistics and probability for engineers”, 3rd Edition., JohnWiley & Sons Inc., 2002.
[30]. Zwillinger D. and Kokoska S., CRC Standard probability and statistics tables and formulae, CRC Press., 2000.