مراجع
[1]. Yang R.T., Adsorbents: fundamentals and applications, Wiley-Interscience, 2003.
[2]. Reich R., Ziegler W. T., and Rogers K. A., “Adsorption of methane”, ethane, and ethylene gases and their binary and ternary mixtures and carbon dioxide on activated carbon at 212-301 K and pressures to 35 atmospheres”, Ind. Eng. Chem. Process Des. Dev., Vol. 19, No. 3, pp. 336-344, 1980.
[3]. He Y., Yun J., and Seaton N.A., “Adsorption equilibrium of binary methane/ethane mixtures in BPL activated carbon: isotherms and calorimetric heats of adsorption”, Langmuir, Vol. 20, No. 16, pp. 6668-6678, 2004.
[4]. Bazan R.E., Bastos-Neto M., Staudt R., Papp H., Azevedo D.C.S., and Cavalcante C.L., “Adsorption equilibria of natural gas components on activated carbon: pure and mixed gas isotherms”, Adsorpt. Sci. Technol., Vol. 26, No. 5, pp. 323-332, 2008.
[5]. Esteves I. A.A.C., Lopes M. S.S., Nunes P. M.C., and Mota J. P.B., “Adsorption of natural gas and biogas components on activated carbon”, Sep. Purif. Technol., Vol. 62, 281–296, 2008.
[6]. Dreisbach F., Staudt R., and Keller J.U., “High pressure adsorption data of methane, nitrogen”, carbon dioxide and their binary and ternary mixtures on activated carbon, Adsorption, Vol. 5, pp. 215–227, 1999.
[7]. Hyun S.H., and Danner R.P., “Equilibrium adsorption of ethane”, ethylene, isobutane, carbon dioxide, and their binary mixtures on 13X molecular sieves, J. Chem. Eng. Data, Vol. 27, No. 2, pp. 196-200, 1982.
[8]. Nolan J.T., McKeehan T.W., and. Danner R.P., “Equilibrium adsorption of oxygen, nitrogen, carbon monoxide, and their binary mixtures on molecular sieve type 10X”, J. Chem. Eng. Data, Vol. 26, No. 2, 112-115, 1981.
[9]. Danner R.P., and Choi E. C. F., “Mixture adsorption equilibria of ethane and ethylene on 13X molecular sieves”, Ind. Eng. Chem. Fundam., Vol. 17, No. 4, pp. 248-253, 1978.
[10]. Hasanzadeh M., Alavi F., Feyzi F., and Dehghani M. R., “Simplified local density model for adsorption of pure gases on activated carbon using Sutherland and Kihara potentials”, Micropor. Mesopor. Mat., Vol. 136, pp. 1–9, 2010.
[11]. Rangarajan B., Lira C. T., and Subramanian R., “Simplified local density model for adsorption over large pressure ranges”, AIChE J., Vol. 41, No. 4, pp. 838-845, 1995.
[12]. Subramanian R., Pyada H., and Lira C. T., “An engineering model for adsorption of gases onto flat surfaces and clustering in supercritical fluids”, Ind. Eng. Chem. Res., Vol. 34, No. 11, pp. 3830-3837, 1995.
[13] Chen J. H., Wong D. S. H., Tan C. S., Subramanian R., Lira C.T., and Orth M., “Adsorption and desorption of carbon dioxide onto and from activated carbon at high pressures”, Ind. Eng. Chem. Res., Vol. 36, No. 7, pp. 2808-2815, 1997.
[14]. Fitzgerald J. E., Sudibandriyo M., Pan Z., Robinson R.L., and Gasem K.A.M., “Modeling the adsorption of pure gases on coals with the SLD Model”, Carbon,
[15]. Fitzgerald J. E., Robinson R.L., and Gasem K.A.M., “Modeling high-pressure adsorption of gas mixtures on activated carbon and coal using a simplified local-density model”, Langmuir, Vol. 22, No. 23, pp. 9610-9618, 2006.
[16]. Soule A. D., Smith C.A., Yang X., and Lira C. T., “Adsorption modeling with the ESD equation of state”, Langmuir, Vol. 17, No. 10, pp. 2950-2957, 2001.
[17]. Yang X., and Lira C. T., “Theoretical study of adsorption on activated carbon from a supercritical fluid by the SLD–ESD approach”, J. Supercritical Fluid, Vol. 37, pp. 191–200, 2006.
[18]. Puziy A. M., Herbst A., Poddubnaya O.I., Germanus J., and Harting P., “Modeling of high-pressure adsorption using the bender equation of state”, Langmuir, Vol. 19, No. 2, pp. 314-320, 2003.
[19]. Gusev V. Y., and O’Brien J.A., “Can molecular simulations be used to predict adsorption on activated carbons?”, Langmuir, Vol. 13, No. 10, pp. 2822-2824, 1997.
[20]. Nguyen T. X., and Bhatia S.K., “Probing the pore wall structure of nanoporous carbons using adsorption”, Langmuir, Vol. 20, No. 9, pp. 3532-3535, 2004.
[21]. Nguyen T. X., Bhatia S.K., and Nicholson D., “Prediction of high-pressure adsorption equilibrium of supercritical gases using density functional theory”, Langmuir, Vol. 21, No. 7, pp. 3187-3197, 2005.
[22]. Yan B., and Yang X., “Adsorption prediction for three binary supercritical gas mixtures on activated carbon based on a NDFT/PSD approach”, Chemical Engineering Science, Vol. 60, pp. 3267-3277, 2005.
[23]. Horvath G., and Kawazoe K., “Method for the calculation of effective pore size distribution in molecular sieve carbon”, J. Chem. Eng. Jpn., Vol. 16, No. 6, pp. 470-475, 1983.
[24]. Rege S. U., and Yang R. T., “Corrected Horvath-Kawazoe Equations for Pore-Size Distribution”, AIChE J., Vol. 46, No. 4, pp. 734-750, 2000.
[25]. Gusev V. Y., and O’Brien J. A., “A self-consistent method for characterization of activated carbons using supercritical adsorption and grand canonical Monte Carlo simulations”, Langmuir, Vol. 13, No. 10, pp. 2815-2821, 1997.
[26]. Peng D., and Robinson D. B., “A new two-constant equation of state”, Ind. Eng. Chem. Fundam., Vol. 15, No. 1,pp. 59-64, 1976.
[27]. Elliott J. R., Suresh S. J., and Donohue M.D., “A simple equation of state for nonspherical and associating molecules”, Ind. Eng. Chem. Res., Vol. 29, No. 7, pp. 1476-1485, 1990.
[28]. Hernandez-Garduza O., Garcia-Sanchez F., Apam-Martinez D., and Vazquez-Roman R., “Vapor pressures of pure compounds using the Peng-Robinson equation of state with three different attractive terms”, Fluid Phase Equilib., Vol. 198, pp. 195–228, 2002.
[29]. Prausnitz J. M., Lichtenthaler R. N., and de Azevedo E. G., “Molecular thermodynamics of fluid-phase equilibria”, 3rd Ed., Prentice Hall, 1999.
[30]. Lee L. L., Molecular Thermodynamics of Non-Ideal Fluids, Butterworths, 1988.
Vol. 41, pp. 2203–2216, 2003.[31]. Poling B. E, Prausnitz J. M., and Reid R. C., The Properties of Gases and Liquids”, 5th Ed., McGraw-Hill, 1987.
[32]. Bansal R. C., and Goyal M., Activated carbon adsorption, CRC Press Taylor & Francis Group, 2005.
[33]. Hasanzadeh M., Dehghani M.R., Feyzi F., and Behzadi B., “A New Simplified Local Density Model for Adsorption of Pure Gases and Binary Mixtures”, Int. J. Thermophys, Vol. 31, pp. 2425–2439, 2010.