[1]. Matijasevic, B., and Banhart, J. (2006). Improvement of aluminium foam technology by tailoring of blowing agent. Scripta Materialia, 54(4), 503-508, Matijasevic, B., & Banhart, J. (2006). Improvement of aluminium foam technology by tailoring of blowing agent. Scripta Materialia, 54(4), 503-508.##
[2]. Goodarzi, F., & Zendehboudi, S. (2019). A comprehensive review on emulsions and emulsion stability in chemical and energy industries, The Canadian Journal of Chemical Engineering, 97(1): 281-309, doi.org/10.1002/cjce.23336.##
[3]. Issaka, S. A., Nour, A. H., & Yunus, R. M. (2015). Review on the fundamental aspects of petroleum oil emulsions and techniques of demulsification, Journal of Petroleum and Environmental Biotechnology, 6(2): 1, x.doi.org/10.4172/2157-7463.1000214.##
[4]. Zolfaghari, R., Fakhru’l-Razi, A., Abdullah, L. C., Elnashaie, S. S., and Pendashteh, A. (2016). Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry, Separation and Purification Technology, 170, 377-407, doi.org/10.1016/j.seppur.2016.06.026.##
[5]. Daniel-David, D., Le Follotec, A., Pezron, I., Dalmazzone, C., Noik, C., Barre, L., and Komunjer, L. (2008). Destabilisation of water-in-crude oil emulsions by silicone copolymer demulsifiers, Oil and Gas Science and Technology-Revue de l’IFP, 63(1): 165-173, doi.org/10.2516/ogst:2008002.##
[6]. Abdulredha, M. M., Aslina, H. S., and Luqman, C. A. (2020). Overview on petroleum emulsions, formation, influence and demulsification treatment techniques. Arabian Journal of Chemistry, 13(1), 3403-3428, doi.org/10.1016/j.arabjc.2018.11.014.##
[7]. Liu, J., Li, X., Jia, W., Li, Z., Zhao, Y., & Ren, S. (2015). Demulsification of crude oil-in-water emulsions driven by graphene oxide nanosheets, Energy & Fuels, 29(7), 4644-4653, doi.org/10.1021/acs.energyfuels.5b00966.##
[8]. Kang, W., Yin, X., Yang, H., Zhao, Y., Huang, Z., Hou, X., ... & Aidarova, S. (2018). Demulsification performance, behavior and mechanism of different demulsifiers on the light crude oil emulsions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 545, 197-204, doi.org/10.1016/j.colsurfa.2018.02.055.##
[9]. Yi, M., Huang, J., & Wang, L. (2017). Research on crude oil demulsification using the combined method of ultrasound and chemical demulsifier, Journal of Chemistry, 2017(1): 9147926, doi.org/10.1155/2017/9147926.##
[10]. Osuji, L. C., and Onojake, C. M. (2004). Trace heavy metals associated with crude oil: A case study of Ebocha-8 Oil-spill-polluted site in Niger Delta, Nigeria, Chemistry & biodiversity, 1(11), 1708-1715.##
[11]. Nordvik, A. B., Simmons, J. L., Bitting, K. R., Lewis, A., and Strøm-Kristiansen, T. (1996). Oil and water separation in marine oil spill clean-up operations, Spill Science & Technology Bulletin, 3(3): 107-122, doi.org/10.1016/S1353-2561(96)00021-7.##
[12]. Gossen, L. P., and Velichkina, L. M. (2006). Environmental problems of the oil-and-gas industry. Petroleum Chemistry, 46, 67-72.##
[13]. Liang, H. W., Guan, Q. F., Chen, L. F., Zhu, Z., Zhang, W. J., and Yu, S. H. (2012). Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications, Angewandte Chemie International Edition, 51(21): 5101-5105, doi.org/10.1002/anie.201200710.##
[14]. Cao, Y., Chen, Y., Liu, N., Lin, X., Feng, L., and Wei, Y. (2014). Mussel-inspired chemistry and Stöber method for highly stabilized water-in-oil emulsions separation, Journal of Materials Chemistry A, 2(48): 20439-20443, doi.org/10.1039/C4TA05075D.##
[15]. Lee, C. H., Johnson, N., Drelich, J., and Yap, Y. K. (2011). The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water–oil filtration. Carbon, 49(2), 669-676, doi.org/10.1016/j.carbon.2010.10.016.##
[16]. Li, H., Wang, X., Song, Y., Liu, Y., Li, Q., Jiang, L., & Zhu, D. (2001). Super-“amphiphobic” aligned carbon nanotube films. Angewandte Chemie, 113(9): 1793-1796.##
[17]. Yuan, J., Liu, X., Akbulut, O., Hu, J., Suib, S. L., Kong, J., and Stellacci, F. (2008). Superwetting nanowire membranes for selective absorption. Nature nanotechnology, 3(6): 332-336, doi: 10.1038/nnano.2008.136.##
[18]. Cao, Y., Zhang, X., Tao, L., Li, K., Xue, Z., Feng, L., & Wei, Y. (2013). Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS applied materials & interfaces, 5(10), 4438-4442, doi.org/10.1021/am4008598.##
[19]. Aulin, C., Netrval, J., Wågberg, L., & Lindström, T. (2010). Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter, 6(14): 3298-3305, doi.org/10.1039/C001939A.##
[20]. Jin, M., Wang, J., Yao, X., Liao, M., Zhao, Y., and Jiang, L. (2011). Underwater oil capture by a three-dimensional network architectured organosilane surface, Advanced Materials, 25(23): 2861-2864, doi:10.1002/adma.201101048.##
[21]. Liu, M., Zheng, Y., Zhai, J., and Jiang, L. (2010). Bioinspired super-antiwetting interfaces with special liquid− solid adhesion. Accounts of chemical research, 43(3): 368-377, doi.org/10.1021/ar900205g.##
[22]. Zhang, F., Zhang, W. B., Shi, Z., Wang, D., Jin, J., and Jiang, L. (2013). Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation, Adv. Mater, 25(30): 4192-4198.##
[23]. Crick, C. R., Gibbins, J. A., & Parkin, I. P. (2013). Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil–water separation, Journal of Materials Chemistry A, 1(19): 5943-5948, doi.org/10.1039/C3TA10636E.##
[24]. Jinlong, S., Shuai, H., Yao, L., Xiangwei, B., Aritra, G., Ranjan, G., and Wenji, X. (2014). Self-driven one-step oil removal from oil spill on water via selective-wettability steel mesh, doi.org/10.1021/am505254j.##
[25]. Li, H., Yin, Y., Zhu, L., Xiong, Y., Li, X., Guo, T., ... & Xue, Q. (2019). A hierarchical structured steel mesh decorated with metal organic framework/graphene oxide for high-efficient oil/water separation, Journal of hazardous materials, 373, 725-732, doi.org/10.1016/j.jhazmat.2019.04.009.##
[26]. Li, X., Zhang, W., Liu, N., Qu, R., Wei, Y., & Feng, L. (2018). Superwetting copper meshes based on self-organized robust CuO nanorods: efficient water purification for in situ oil removal and visible light photodegradation, Nanoscale, 10(9), 4561-4569, doi.org/10.1039/C7NR09201F.##
[27]. Deng, W., Long, M., Miao, X., Wen, N., & Deng, W. (2017). Eco-friendly preparation of robust superhydrophobic Cu(OH)2 coating for self-cleaning, oil-water separation and oil sorption. Surface and coatings technology, 325, 14-21, doi.org/10.1016/j.surfcoat.2017.06.040.##
[28]. Manna, U., & Lynn, D. M. (2015). Synthetic surfaces with robust and tunable underwater superoleophobicity. Advanced Functional Materials, 25(11): 1672-1681, doi.org/10.1002/adfm.201403735.##
[29]. Liu, Y., Yin, J., Fu, Y., Zhao, P., Zhang, Y., He, B., & He, P. (2020). Underwater superoleophobic APTES-SiO2/PVA organohydrogel for low-temperature tolerant, self-healing, recoverable oil/water separation mesh, Chemical Engineering Journal, 382, 122925, doi.org/10.1016/j.cej.2019.122925.##
[30]. Chen, X., Chen, D., Li, N., Xu, Q., Li, H., He, J., and Lu, J. (2019). Durable and stable MnMoO4-coated copper mesh for highly efficient oil-in-water emulsion separation and photodegradation of organic contaminants, ACS applied materials & interfaces, 11(26): 23789-23797, doi.org/10.1021/acsami.9b07091.##
[31]. Yu, Z., Yun, F.F., Gong, Z., Yao, Q., Dou, S., Liu, K., Jiang, L. and Wang, X. (2017). A novel reusable superhydrophilic NiO/Ni mesh produced by a facile fabrication method for superior oil/water separation. Journal of materials chemistry A, 5(22), 10821-10826, doi.org/10.1039/C7TA01987D.##
[32]. Ahmadian, H., Tehrani, F. S., and Aliannezhadi, M. (2019). Hydrothermal synthesis and characterization of WO3 nanostructures: effects of capping agent and pH. Materials Research Express, 6(10): 105024, doi:10.1088/2053-1591/ab3826.##