[1]. Nasralla, R. A., van der Linde, H. A., Marcelis, F. H., Mahani, H., Masalmeh, S. K., Sergienko, E., ... & Basu, S. (2016, November). Low salinity waterflooding for a carbonate reservoir experimental evaluation and numerical interpretation. In Abu Dhabi International Petroleum Exhibition and Conference (p. D011S005R003). SPE, doi: 10.1016/j.petrol.2018.01.028. ##
[2]. Belhaj, A. F., Fakir, S. H., Singh, N., & Sarma, H. K. (2023, May). A comparative enhanced oil recovery study between low-salinity water and hybrid surfactant process for a carbonate reservoir. In SPE Western Regional Meeting (p. D041S013R007). SPE. Doi: 10.2118/212959-MS. ##
[3]. Mahani, H., & Thyne, G. (2023). Low-salinity (enhanced) waterflooding in carbonate reservoirs. In Recovery Improvement (39-107). Gulf Professional Publishing. doi: 10.1016/B978-0-12-823363-4.00007-8. ##
[4]. Izadi, S., & Jafarzadegan, M. (2022). Simulation of Asphaltene Precipitation in the Reservoir and Its Final Effect on Wells’ Productivity Index. Journal of Petroleum Science and Technology, 12(3), 24-36. doi:10.22078/JPST.2023.4572.1755. ##
[5]. Roozbahani, A., Saeedi Dehaghani, A.. H., & Ayatollahi, S. (2019). Experimental investigation of the Effect of Salinity and Type of Ion on the Stability of Water in Oil emulsion, Journal of Petroleum Research, doi: 10.22078/pr.2019.3221.2487. ##
[6]. Dayili, M., Alghamdi, A., Sadeg, H., & Abdel-Fattah, A. (2023, March). Investigating separation efficiency of oil-in-water emulsions subjected to an acoustic field. In SPE Middle East Oil and Gas Show and Conference (p. D031S120R002). SPE, doi: 10.2118/213344-ms. ##
[7]. Nazari, S. M., & Malmir, P. (2022). Macroscopic Investigation of Injected water Salinity on the Production of Emulsion Oil Reservoirs., doi: 10.22078/PR.2021.4393.2994. ##
[8]. Schramm, L. L. (1992). Petroleum emulsions: basic principles. doi: 10.1021/ba-1992-0231.ch001. ##
[9]. Mohammed, I., Mahmoud, M., Al Shehri, D., El-Husseiny, A., & Alade, O. (2021). Asphaltene precipitation and deposition: A critical review. Journal of Petroleum Science and Engineering, 197, 107956. Doi: 10.1016/j.petrol.2020.107956. ##
[10]. Tambe, D. E., & Sharma, M. M. (1994). The effect of colloidal particles on fluid-fluid interfacial properties and emulsion stability. Advances in colloid and interface science, 52, 1-63. doi: 10.1016/0001-8686(94)80039-1. ##
[11]. Aveyard, R., Binks, B. P., & Clint, J. H. (2003). Emulsions stabilised solely by colloidal particles. Advances in colloid and interface science, 100, 503-546, Doi: 10.1016/s0001-8686(02)00069-6. ##
[12]. Pal, R. (1996). Effect of droplet size on the rheology of emulsions. AICHE journal, 42(11): 3181-3190. doi: 10.1002/aic.690421119. ##
[13]. Tavakkoli, M., Chen, A., Sung, C. A., Kidder, K. M., Lee, J. J., Alhassan, S. M., & Vargas, F. M. (2016). Effect of emulsified water on asphaltene instability in crude oils. Energy & Fuels, 30(5): 3676-3686, Doi: 10.1021/acs.energyfuels.5b02180. ##
[14]. Sohrabi, M., Mahzari, P., Farzaneh, S. A., Mills, J. R., Tsolis, P., & Ireland, S. (2017). Novel insights into mechanisms of oil recovery by use of low-salinity-water injection. Spe Journal, 22(02): 407-416, doi: 10.2118/172778-PA. ##
[15]. Shojaati, F., Mousavi, S. H., Riazi, M., Torabi, F., & Osat, M. (2017). Investigating the effect of salinity on the behavior of asphaltene precipitation in the presence of emulsified water. Industrial & Engineering Chemistry Research, 56(48): 14362-14368, Doi: 10.1021/acs.iecr.7b03331. ##
[16]. Rostami, P., Mehraban, M. F., Sharifi, M., Dejam, M., & Ayatollahi, S. (2019). Effect of water salinity on oil/brine interfacial behaviour during low salinity waterflooding: A mechanistic study. Petroleum, 5(4): 367-374, doi: 10.1016/j.petlm.2019.03.005. ##
[17]. Mokhtari, R., Hosseini, A., Fatemi, M., Andersen, S. I., & Ayatollahi, S. (2022). Asphaltene destabilization in the presence of an aqueous phase: The effects of salinity, ion type, and contact time. Journal of Petroleum Science and Engineering, 208, 109757, doi: 10.1016/j.petrol.2021.109757. ##
[18]. Saw, R. K., & Mandal, A. (2023). Experimental investigation on fluid/fluid and rock/fluid interactions in enhanced oil recovery by low salinity water flooding for carbonate reservoirs. Fuel, 352, 129156, doi: 10.1016/j.fuel.2023.129156. ##
[19]. Balavi, A., Ayatollahi, S., & Mahani, H. (2023). The simultaneous effect of brine salinity and dispersed carbonate particles on asphaltene and emulsion stability. Energy & Fuels, 37(8), 5827-5840, doi.org/10.1021/acs.energyfuels.3c00293. ##
[20]. Mwakipunda, G. C., Jia, R., Mgimba, M. M., Ngata, M. R., Mmbuji, A. O., Said, A. A., & Yu, L. (2023). A critical review on low salinity waterflooding for enhanced oil recovery: Experimental studies, simulations, and field applications. Geoenergy Science and Engineering, 227, 211936. doi: 10.1016/j.geoen.2023.211936. ##
[21]. Golmohammadi, M., Mahani, H., & Ayatollahi, S. (2023). Toward low-salinity waterflooding predictive capability development in carbonates for fast screening of oil-brine-rock candidates. Geoenergy Science and Engineering, 221, 111258, doi: 10.1016/j.petrol.2022.111258. ##
[22]. Mokhtari, R., & Ayatollahi, S. (2019). Dissociation of polar oil components in low salinity water and its impact on crude oil–brine interfacial interactions and physical properties. Petroleum Science, 16(2), 328-343, doi: 10.1007/s12182-018-0275-5. ##