[1]. Nabzar, L. (2011). Panorama 2011: Water in fuel production Oil production and refining. ##
[2]. Sydansk, R. D., & Romero-Zerón, L. (2011). Reservoir conformance improvement. Society of Petroleum Engineers Richardson, TX. ##
[3]. Rabiei, M. (2011). Excess water production diagnosis in oil fields using ensemble classifiers (Doctoral dissertation, Curtin University), hdl.handle.net/20.500.11937/801. ##
[4] Taha, A., & Amani, M. (2019). Overview of water shutoff operations in oil and gas wells; chemical and mechanical solutions. ChemEngineering, 3(2), 51. doi.org/https://doi.org/10.3390/chemengineering3020051. ##
[5]. Thomas, F. B., Bennion, D. B., Anderson, G. E., Meldrum, B. T., & Heaven, W. J. (2000). Water shut-off treatments-reduce water and accelerate oil production. Journal of Canadian Petroleum Technology, 39(04). doi.org/https://doi.org/10.2118/00-04-TN. ##
[6]. Ahmad, N., Al-Shabibi, H., Zeybek, M., & Malik, S. (2012). Comprehensive diagnostic and water shut-off in open and cased hole carbonate horizontal wells, In Abu Dhabi International Petroleum Exhibition and Conference, (pp. SPE-162287). SPE, doi.org/10.2118/162287-MS. ##
[7]. Burrafato, G., Pitoni, E., Perez, D., & Cantini, S. (2005, September). Water control in fissured reservoirs–Diagnosis and implementation of solutions: Cases from Northern Italy. In SPE Offshore Europe Conference and Exhibition (pp. SPE-96569). doi.org/10.2118/96569-MS. ##
[8]. Ahmed, T. (2010). Chapter 9 - gas and water coning. In T. Ahmed (Ed.), Reservoir engineering. Handbook Fourth Edition, 583-649. Gulf Professional Publishing. doi.org/https://doi.org/10.1016/B978-1-85617-803-7.50017-1. ##
[9]. Talebian, S. H., & Beglari, A. (2019). Application of production data-driven diagnostics workflow for water shut-off candidate selection in tight carbonate field. SN Applied Sciences, 1(12), 1723. doi.org/10.1007/s42452-019-1674-y. ##
[10]. Seright, R. S., Lane, R. H., & Sydansk, R. D. (2003). A strategy for attacking excess water production. SPE Production & Facilities, 18(03): 158-169, doi.org/10.2118/84966-PA. ##
[11]. Páez, S. M. D. B. (2004). Identification of technical barriers and preferred practices for oil production in the Appalachian Basin. West Virginia University. ##
[12]. Reynolds Rodney, R. (2003). Produced water and associated issues. A manual for independent operator. Petroleum Technology Transfer Council, Tulsa. ##
[13]. Yortsos, Y. C., Choi, Y., Yang, Z., & Shah, P. C. (1999). Analysis and interpretation of water/oil ratio in waterfloods. Spe Journal, 4(04), 413-424, doi.org/10.2118/59477-PA. ##
[14]. Ali Ahmed, A. R., Bhagavatula, R., & Prosvirkin, S. (2017, October). Spectral Noise Logging SNL as a Key Tool to Identify Water Source in a Deviated Production Well on ESP. In SPE Kuwait Oil and Gas Show and Conference (p. D041S019R004). doi.org/10.2118/187561-MS. ##
[15]. Bailey, B., Crabtree, M., Tyrie, J., Elphick, J., Kuchuk, F., Romano, C., & Roodhart, L. (2000). Water control. Oilfield review, 12(1): 30-51. ##
[16]. Chan K. S. (1995). Water control diagnostic plots. SPE Annual Technical Conference and Exhibition?, doi.org/10.2118/30775-MS.
[17]. Stiff Jr, H. A. (1951). The interpretation of chemical water analysis by means of patterns. Journal of Petroleum Technology, 3(10), 15-3, doi.org/10.2118/951376-G. ##
[18]. Foster, J., Misra, S., Osogba, O., & Bhatia, M. (2021). Machine learning assisted detection of excess water-producing wells in unconventional shale plays. Journal of Natural Gas Science and Engineering, 92, 104025. doi.org/https://doi.org/10.1016/j.jngse.2021.104025. ##
[19]. Amir, Z., Said, I. M., & Jan, B. M. (2019). In situ organically cross‐linked polymer gel for high‐temperature reservoir conformance control: A review. Polymers for Advanced Technologies, 30(1): 13-39. doi.org/ doi.org/10.1002/pat.4455. ##
[20]. Zeinijahromi, A., & Bedrikovetski, P. (2015, June). Controlling Excessive Water Production Using Induced Formation Damage. In SPE European Formation Damage Conference and Exhibition (pp. SPE-174229), doi.org/10.2118/174229-MS. ##
[21]. Sadeghnejad, S., Ashrafizadeh, M., & Nourani, M. (2022). Improved oil recovery by gel technology: Water shutoff and conformance control. In Chemical methods (pp. 249-312). Gulf Professional Publishing. doi.org/https://doi.org/10.1016/B978-0-12-821931-7.00001-8. ##
[22]. Jain, P., Sharma, V., Raju, A. V., & Patra, S. K. (2000, October). Polymer gel squeeze for gas shutoff, water shutoff and injection profile improvement in bombay high pilot wells. In SPE Asia Pacific Oil and Gas Conference and Exhibition (pp. SPE-64437), doi.org/10.2118/64437-MS. ##
[23]. Stavland, A., Andersen, K. I., Sandoey, B., Tjomsland, T., & Mebratu, A. A. (2006, April). How to apply a blocking gel system for bullhead selective water shutoff: from laboratory to field. In SPE Improved Oil Recovery Conference? (pp. SPE-99729), doi.org/10.2118/99729-MS. ##
[24]. Willhite G. P., & Pancake R. E. (2008). Controlling water production using gelled polymer systems. SPE Reservoir Evaluation & Engineering, 11(03): 454-465. doi.org/10.2118/89464-PA. ##
[25]. Du, G., Peng, Y., Pei, Y., Zhao, L., Wen, Z., & Hu, Z. (2017). Thermo-responsive temporary plugging agent based on multiple phase transition supramolecular gel. Energy & Fuels, 31(9): 9283-9289. doi.org/10.1021/acs.energyfuels.7b01691. ##
[26]. Bai, B., Zhou, J., & Yin, M. (2015). A comprehensive review of polyacrylamide polymer gels for conformance control. Petroleum exploration and development, 42(4), 525-532, doi.org/10.1016/S1876-3804(15)30045-8. ##
[27]. Rousseau, D., Chauveteau, G., Renard, M., Tabary, R., Zaitoun, A., Mallo, P., Braun, O. and Omari, A. (2005). February. Rheology and transport in porous media of new water shutoff/conformance control microgels. In SPE International Conference on Oilfield Chemistry? (pp. SPE-93254), doi.org/10.2118/93254-MS. ##
[28]. Zhao, L., Pei, Y., Du, G., Wen, Z., Luo, Z., & Du, J. (2018). Thermo-responsive temporary plugging agent based on multiphase transitional supramolecular gel. Petroleum Chemistry, 58, 94-101. doi.org/https://doi.org/10.1134/S0965544118010103. ##
[29]. Pu, W. F., Yang, Y., & Yuan, C. D. (2016). Gelation performance of poly (ethylene imine) crosslinking polymer–layered silicate nanocomposite gel system for potential water‐shutoff use in high‐temperature reservoirs. Journal of Applied Polymer Science, 133(47). doi.org/10.1002/app.44243. ##
[30]. Bai, Y., Lian, Y., Ban, C., Wang, Z., Zhao, J., & Zhang, H. (2021). Facile synthesis of temperature-resistant hydroxylated carbon black/polyacrylamide nanocomposite gel based on chemical crosslinking and its application in oilfield. Journal of Molecular Liquids, 329, 115578. doi.org/10.1016/j.molliq.2021.115578. ##
[31]. Aalaie, J., Alvand, E., Hemmati, M., & Sajjadian, V. A. (2015). Preparation and probing of the steady shear flow and viscoelastic properties of weakly crosslinked hydrogels based on sulfonated polyacrylamide for oil recovery applications. Polymer Science Series A, 57, 680-687.. https://doi.org/https://doi.org/10.1134/S0965545X15050016. ##
[32]. Wang, W., Liu, Y., & Gu, Y. (2003). Application of a novel polymer system in chemical enhanced oil recovery (EOR). Colloid and Polymer Science, 281, 1046-1054. https://doi.org/https://doi.org/10.1007/s00396-003-0873-6. ##
[33]. Kabir, A. H. (2001). Chemical Water & Gas Shutoff Technology–An Overview. In SPE International Improved Oil Recovery Conference in Asia Pacific (pp. SPE-72119), doi.org/10.2118/72119-MS. ##
[34]. Sydansk, R. D., & Seright, R. S. (2007). When and where relative permeability modification water-shutoff treatments can be successfully applied. SPE Production & Operations, 22(02), 236-247, doi.org/10.2118/99371-PA. ##
[35]. Gogarty, W. B. (1967). Rheological properties of pseudoplastic fluids in porous media. Society of PetroleumEngineers Journal, 7(02), 149-160. https://doi.org/https://doi.org/10.2118/1566-A. ##
[36]. Ding, L. X., He, G. Q., & Kong, Q. (2003). Research on microbially produced biosurfactants and their applications. Biotechnology, 13(5), 52-54. ##
[37]. Dai, C., You, Q., Zhao, M., Zhao, G., & Zhao, F. (2023). Microbial Enhanced Oil Recovery. In Principles of Enhanced Oil Recovery, 255-273, Singapore: Springer Nature Singapore. https://doi.org/https://doi.org/10.1007/978-981-99-0193-7_11. ##
[38]. Zhang, F. (2014). Contributing Microbial Communities for Microbial Enhanced Oil Recovery in Different Oil Reservoirs (Doctoral dissertation, China University of Geosciences). ##
[39]. Raiders, R. A., Maher, T. F., Knapp, R. M., & McInerney, M. J. (1986, October). Selective plugging and oil displacement in crossflow core systems by microrganisms. In SPE Annual Technical Conference and Exhibition? (pp. SPE-15600). doi.org/10.2118/15600-MS, ##
[40]. Sagbana, P. I., & Abushaikha, A. S. (2021). A comprehensive review of the chemical-based conformance control methods in oil reservoirs. Journal of Petroleum Exploration and Production Technology, 11(5): 2233-2257. doi.org/https://doi.org/10.1007/s13202-021-01158-6. ##
[41]. Alvarado, D., & Marsden Jr, S. S. (1979). Flow of oil-in-water emulsions through tubes and porous media. Society of Petroleum Engineers Journal, 19(06): 369-377. doi.org/https://doi.org/10.2118/5859-PA. ##
[42]. McAuliffe C. D. (1973). Oil-in-water emulsions and their flow properties in porous media. Journal of petroleum technology, 25(06): 727-733. doi.org/https://doi.org/10.2118/4369-PA. ##
[43]. Abass, E., & Merghany, S. (2011). Integration of Technical Problems and Diagnosis of High Water Cut-Sudanese Oil Fields. ##
[44]. Taha, A., & Amani, M. (2019). Introduction to Smart Oil and Gas Wells: Drilling, Completion and Monitoring Solutions. Int. J. Petrochem. Res, 3, 249-254. doi: 10.18689/ijpr-1000143 . ##
[45]. صحرایی، ا. (1389). مطالعه آزمایشگاهی تکنولوژی مسدودکردن انتخابی توسط امولسیون معکوس به منظور بهبود ازدیاد برداشت نفت از بایههای نفتی با نفوذپذیری متفاوت. ##
[46]. Muktadir, G., Amro, M. D. M., & Schramm, A. (2016, November). Review and applicability of downhole separation technology. In SPE Middle East Artificial Lift Conference and Exhibition (p. D021S004R003). doi.org/10.2118/184201-MS. ##
[47]. Seright, R. S., & Liang, J. (1995, May). A comparison of different types of blocking agents. In SPE European Formation Damage Conference and Exhibition (pp. SPE-30120). doi.org/10.2118/30120-MS. ##
[48]. Joseph, A., & Ajienka, J. A. (2010, July). A review of water shutoff treatment strategies in oil fields. In SPE Nigeria Annual International Conference and Exhibition (pp. SPE-136969). doi.org/10.2118/136969-MS. ##
[49]. Ahmadi, M. A., Ebadi, M., & Hosseini, S. M. (2014). Prediction breakthrough time of water coning in the fractured reservoirs by implementing low parameter support vector machine approach. Fuel, 117, 579-589. doi.org/https://doi.org/10.1016/j.fuel.2013.09.071. ##
[50]. Uddin, S., Dolan, J. D., Chona, R. A., Gazi, N. H., Monteiro, K., Al-Rubaiyea, J. A., & Al-Sharqawi, A. (2003, June). Lessons learned from the first openhole horizontal well water shutoff job using two new polymer systems-A case history from Wafra Ratawi field, Kuwait. In SPE Middle East Oil and Gas Show and Conference (pp. SPE-81447). doi.org/10.2118/81447-MS. ##
[51]. Park, H., Han, J., & Sung, W. (2015). Effect of polymer concentration on the polymer adsorption-induced permeability reduction in low permeability reservoirs. Energy, 84, 666-671, doi.org/10.1016/j.energy.2015.03.028. ##
[52]. Weidong, W., Junzhang, L., Xueli, G., Jing, W., Ximing, L., Yan, J., & Fengmin, Z. (2014). MEOR field test at block Luo801 of Shengli oil field in China. Petroleum Science and Technology, 32(6): 673-679, doi.org/10.1080/10916466.2011.601507. ##
[53]. Al-Umran, M. I., Saudi, M. M., & Al-Tameimi, Y. M. (2005, March). Inflatable enables successful water shut-off in high angle wellbores in Ghawar field. In SPE Middle East Oil and Gas Show and Conference (pp. SPE-93261). doi.org/10.2118/93261-MS. ##
[54]. Al-Zain, A., Duarte, J., Haldar, S., Driweesh, S., Al-Jandal, A., Shammeri, F., Bugrov, V. and Sarfraz, T. (2009). May. Successful utilization of fiber optic telemetry enabled coiled tubing for water shut-off on a horizontal oil well in Ghawar Field. In SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition (pp. SPE-126063). doi.org/10.2118/126063-MS. ##
[55]. Swisher, M. D., & Wojtanowicz, A. K. (1995). New dual completion method eliminates bottom water coning. In SPE Annual Technical Conference and Exhibition? (pp. SPE-30697). doi.org/10.2118/30697-MS. ##
[56]. Whitney, D. D., Montgomery, D. W., & Hutchins, R. D. (1996). Water shutoff in the North Sea: testing a new polymer gel system in the Heather Field, UKCS Block 2/5. SPE Production & Facilities, 11(02), 108-112, doi.org/10.2118/30426-PA. ##
[57]. Børeng, R., & Svendsen, O. B. (1997, March). A Successful Water shut off. A case study from the statfjord field. In SPE Oklahoma City Oil and Gas Symposium/Production and Operations Symposium (pp. SPE-37466). doi.org/10.2118/37466-MS .
[58]. Williams G.,Morgan J.,Wylde J., & Frampton H. (2006). Successful field application of a new selective water shut off system. ##
[59]. Town, K., Sheehy, A. J., & Govreau, B. R. (2010). MEOR success in southern Saskatchewan. SPE Reservoir Evaluation & Engineering, 13(05): 773-781, doi.org/10.2118/124319-PA. ##