[1]. Saboorian-Jooybari, H., Dejam, M., & Chen, Z. (2016). Heavy oil polymer flooding from laboratory core floods to pilot tests and field applications: Half-century studies. Journal of Petroleum Science and Engineering, 142, 85-100, doi.org/10.1016/j.petrol.2016.01.023.##
[2]. Wang, J., & Dong, M. (2009). Optimum effective viscosity of polymer solution for improving heavy oil recovery. Journal of Petroleum Science and Engineering, 67(3-4): 155-158, doi.org/10.1016/j.petrol.2009.05.007. ##
[3]. Lewandowska, K. (2007). Comparative studies of rheological properties of polyacrylamide and partially hydrolyzed polyacrylamide solutions. Journal of Applied Polymer Science, 103(4): 2235-2241, doi.org/10.1002/app.25247. ##
[4]. Kyani, A., & Hashemizadeh, A. (2022). Successful Case Studies on the Use of Polymers to EOR by Polymer Flooding. Journal of Petroleum Research, 32(1401-1): 24-50, doi:10.22078/pr.2022.4508.3033. ##
[5]. Kozaki, C. (2012). Efficiency of low salinity polymer flooding in sandstone cores, hdl.handle.net/2152/ETD-UT-2012-05-4974. ##
[6]. Shaker Shiran, B., & Skauge, A. (2013). Enhanced oil recovery (EOR) by combined low salinity water/polymer flooding. Energy & Fuels, 27(3): 1223-1235, doi.org/10.1021/ef301538e. ##
[7]. Nazarisaram, M. (2021). The effect of low-salinity water on wettability and oil recovery by core flooding test: a case study in the shadegan oil field. Journal of Petroleum Science and Technology, 11(2): 53-62, doi: 10.22078/jpst.2021.4636.1763. ##
[8]. Vermolen, E. C., Pingo Almada, M., Wassing, B. M., Ligthelm, D. J., & Masalmeh, S. K. (2014). Low-salinity polymer flooding: improving polymer flooding technical feasibility and economics by using low-salinity make-up brine. In International Petroleum Technology Conference (IPTC-17342). IPTC, doi.org/10.2523/IPTC-17342-MS. ##
[9]. Almansour, A. O., AlQuraishi, A. A., AlHussinan, S. N., & AlYami, H. Q. (2017). Efficiency of enhanced oil recovery using polymer-augmented low salinity flooding. Journal of Petroleum Exploration and Production Technology, 7(4): 1149-1158. ##
[10]. Unsal, E., Ten Berge, A. B. G. M., & Wever, D. A. Z. (2018). Low salinity polymer flooding: Lower polymer retention and improved injectivity. Journal of Petroleum Science and Engineering, 163, 671-682, doi.org/10.1016/j.petrol.2017.10.069. ##
[11]. Tahir, M., Hincapie, R. E., Foedisch, H., Strobel, G. J., & Ganzer, L. (2019, October). Potential benefits of fluid optimization for combined smart-water and polymer flooding: Impact on remaining oil saturation. In SPE Russian Petroleum Technology Conference? (D023S014R002). doi.org/10.2118/196763-MS. ##
[12]. Kakati, A., Kumar, G., & Sangwai, J. S. (2020). Low salinity polymer flooding: effect on polymer rheology, Injectivity, Retention, and Oil Recovery Efficiency. Energy & Fuels, 34(5): 5715-5732, doi.org/10.1021/acs.energyfuels.0c00393. ##
[13]. Dake, L. P. (1983). Fundamentals of reservoir engineering. Elsevier. ##
[14]. Mollaei, A., & Delshad, M. (2011, October). General isothermal enhanced oil recovery and waterflood forecasting model. In SPE Annual Technical Conference and Exhibition? (SPE-143925). doi.org/10.2118/143925-MS. ##
[15]. Mollaei, A., & Delshad, M. (2019). Introducing a novel model and tool for design and performance forecasting of waterflood projects. Fuel, 237, 298-307, doi.org/10.1016/j.fuel.2018.09.125. ##
[16]. Koval, E. (1963). A method for predicting the performance of unstable miscible displacement in heterogeneous media. Society of Petroleum Engineers Journal, 3(02): 145-154, doi.org/10.2118/450-PA. ##
[17]. Jain, L., & Lake, L. W. (2014, April). Survelliance of Secondary and Tertiary Floods: Application of Koval’s Theory to Isothermal Enhanced Oil Recovery Displacements. In SPE Improved Oil Recovery Conference? (SPE-169055). doi.org/10.2118/169055-MS. ##
[18]. Jain, L., & Lake, L. W. (2013, September). Upscaling of miscible floods: An extension to Koval’s theory. In SPE Annual Technical Conference and Exhibition? (D021S030R001). doi.org/10.2118/166400-MS. ##
[19]. Farajzadeh, R., Wassing, B. L., & Lake, L. W. (2019). Insights into design of mobility control for chemical enhanced oil recovery. Energy Reports, 5, 570-578, doi.org/10.1016/j.egyr.2019.05.001. ##
[20]. Lake, L. W. (1989). Enhanced oil recovery. ##