[1]. Sun, S. Q., & Sloan, R. (2003, October). Quantification of uncertainty in recovery efficiency predictions: lessons learned from 250 mature carbonate fields. In SPE Annual Technical Conference and Exhibition? (SPE-84459). SPE, doi: 10.2118/84459-ms.##
[2]. Austad, T., Strand, S., Madland, M. V., Puntervold, T., & Korsnes, R. I. (2008). Seawater in chalk: An EOR and compaction fluid. SPE Reservoir Evaluation & Engineering, 11(04): 648-654, doi: 10.2118/118431-pa. ##
[3]. Chilingar, G. V., & Yen, T. F. (1983). Some notes on wettability and relative permeabilities of carbonate reservoir rocks, II. Energy Sources, 7(1): 67-75, doi.org/10.1080/00908318308908076. ##
[4]. Rassenfoss, S. (2016). Scaling up smart water. Journal of Petroleum Technology, 68(09): 39-41, doi: 10.2118/0916-0039-JPT. ##
[5]. Austad, T., Strand, S., Høgnesen, E. J., & Zhang, P. (2005, February). Seawater as IOR fluid in fractured chalk. In SPE International Conference on Oilfield Chemistry? (SPE-93000). SPE, doi: 10.2118/93000-ms. ##
[6]. Strand, S., Høgnesen, E. J., & Austad, T. (2006). Wettability alteration of carbonates—Effects of potential determining ions (Ca2+ and SO42−) and temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 275(1-3): 1-10, doi: 10.1016/j.colsurfa.2005.10.061. ##
[7]. Lager, A., Webb, K. J., Black, C. J. J., Singleton, M., & Sorbie, K. S. (2008). Low salinity oil recovery-an experimental investigation1. Petrophysics-The SPWLA Journal of Formation Evaluation and Reservoir Description, 49(01): SPWLA-2008-v49n1a2. ##
[8]. Yousef, A. A., Al-Saleh, S., & Al-Jawfi, M. (2012). Improved/enhanced oil recovery from carbonate reservoirs by tuning injection water salinity and ionic content. In SPE Improved Oil Recovery Conference? (SPE-154076). SPE, doi: 10.2118/154076-ms. ##
[9]. Sohal, M. A., Kucheryavskiy, S., Thyne, G., & Søgaard, E. G. (2017). Study of ionically modified water performance in the carbonate reservoir system by multivariate data analysis. Energy & Fuels, 31(3): 2414-2429, doi: 10.1021/acs.energyfuels.6b02292. ##
[10]. Yousef, A. A., Al-Saleh, S., & Al-Jawfi, M. (2011, May). New recovery method for carbonate reservoirs through tuning the injection water salinity: Smart waterflooding. In SPE Europec featured at EAGE Conference and Exhibition? (SPE-143550). SPE., doi: 10.2118/143550-ms. ##
[11]. Austad, T., Shariatpanahi, S. F., Strand, S., Black, C. J. J., & Webb, K. J. (2012). Conditions for a low-salinity enhanced oil recovery (EOR) effect in carbonate oil reservoirs. Energy & fuels, 26(1): 569-575, doi: 10.1021/ef201435g. ##
[12]. Austad, T., RezaeiDoust, A., & Puntervold, T. (2010, April). Chemical mechanism of low salinity water flooding in sandstone reservoirs. In SPE Improved Oil Recovery Conference? (SPE-129767), doi.org/10.2118/129767-MS. ##
[13]. Mahani, H., Keya, A. L., Berg, S., Bartels, W. B., Nasralla, R., & Rossen, W. R. (2015). Insights into the mechanism of wettability alteration by low-salinity flooding (LSF) in carbonates. Energy & Fuels, 29(3): 1352-1367, doi: 10.1021/ef5023847. ##
[14]. Hussain, F., Zeinijahromi, A., Bedrikovetsky, P., Badalyan, A., Carageorgos, T., & Cinar, Y. J. J. O. P. S. (2013). An experimental study of improved oil recovery through fines-assisted waterflooding. Journal of Petroleum Science and Engineering, 109, 187-197, doi: 10.1016/j.petrol.2013.08.031. ##
[15]. Zeinijahromi, A., Farajzadeh, R., Bruining, J. H., & Bedrikovetsky, P. (2016). Effect of fines migration on oil–water relative permeability during two-phase flow in porous media. Fuel, 176, 222-236, doi: 10.1016/j.fuel.2016.02.066. ##
[16]. Hamouda, A. A., & Valderhaug, O. M. (2014). Investigating enhanced oil recovery from sandstone by low-salinity water and fluid/rock interaction. Energy & Fuels, 28(2): 898-908, doi: 10.1021/ef4020857. ##
[17]. Pu, H., Xie, X., Yin, P., & Morrow, N. R. (2010). Low salinity waterflooding and mineral dissolution. In SPE Annual Technical Conference and Exhibition? (pp. SPE-134042). doi.org/10.2118/134042-MS. ##
[18]. McGuire, P. L., Chatham, J. R., Paskvan, F. K., Sommer, D. M., & Carini, F. H. (2005, March). Low salinity oil recovery: An exciting new EOR opportunity for Alaska’s North Slope. In SPE western regional meeting (SPE-93903). doi.org/10.2118/93903-MS. ##
[19]. Piñerez T, I. D., Austad, T., Strand, S., Puntervold, T., Wrobel, S., & Hamon, G. (2016, April). Linking low salinity EOR effects in sandstone to pH, mineral properties and water composition. In SPE Improved Oil Recovery Conference? (SPE-179625), doi: 10.2118/179625-ms. ##
[20]. Brady, P. V., Morrow, N. R., Fogden, A., Deniz, V., Loahardjo, N., & Winoto. (2015). Electrostatics and the low salinity effect in sandstone reservoirs. Energy & Fuels, 29(2), 666-677, doi: 10.1021/ef502474a. ##
[21]. Emadi, A., & Sohrabi, M. (2013, September). Visual investigation of oil recovery by low salinity water injection: formation of water micro-dispersions and wettability alteration. In SPE Annual Technical Conference and Exhibition? (D021S030R004), doi: 10.2118/166435-ms. ##
[22]. Sohrabi, M., Mahzari, P., Farzaneh, S. A., Mills, J. R., Tsolis, P., & Ireland, S. (2017). Novel insights into mechanisms of oil recovery by use of low-salinity-water injection. Spe Journal, 22(02): 407-416, doi: 10.2118/172778-PA. ##
[23]. Al-Shalabi, E. W., Sepehrnoori, K., & Delshad, M. (2013, September). Does the double layer expansion mechanism contribute to the LSWI effect on hydrocarbon recovery from carbonate rocks?. In SPE Reservoir Characterisation and Simulation Conference and Exhibition? (SPE-165974), doi: 10.2118/165974-ms. ##
[24]. Nasralla, R. A., & Nasr-El-Din, H. A. (2014). Double-layer expansion: is it a primary mechanism of improved oil recovery by low-salinity waterflooding?. SPE Reservoir Evaluation & Engineering, 17(01), 49-59, doi.org/10.2118/154334-PA. ##
[25]. Yildiz, H. O., & Morrow, N. R. (1996). Effect of brine composition on recovery of Moutray crude oil by waterflooding. Journal of Petroleum science and Engineering, 14(3-4), 159-168, doi: 10.1016/0920-4105(95)00041-0. ##
[26]. Zhang, P., Tweheyo, M. T., & Austad, T. (2007). Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42−. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1-3): 199-208, doi: 10.1016/j.colsurfa.2006.12.058. ##
[27]. Standnes, D. C., Nogaret, L. A., Chen, H. L., & Austad, T. (2002). An evaluation of spontaneous imbibition of water into oil-wet carbonate reservoir cores using a nonionic and a cationic surfactant. Energy & Fuels, 16(6), 1557-1564, doi: 10.1021/ef0201127. ##
[28]. Strand, S., Austad, T., Puntervold, T., Høgnesen, E. J., Olsen, M., & Barstad, S. M. F. (2008). “Smart water” for oil recovery from fractured limestone: a preliminary study. Energy & Fuels, 22(5), 3126-3133, doi: 10.1021/ef800062n. ##
[29]. Kazankapov, N. (2014). Enhanced oil recovery in Caspian carbonates with Smart Water. In Society of Petroleum Engineers-SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition 2014, RO and G 2014-Sustaining and Optimising Production: Challenging the Limits with Technology, (1097-1113). ##
[30]. Zhang, Y., Xie, X., & Morrow, N. R. (2007). Waterflood performance by injection of brine with different salinity for reservoir cores. In SPE Annual Technical Conference and Exhibition? (SPE-109849). doi.org/10.2118/109849-MS. ##
[31]. Tang, G. Q., & Morrow, N. R. (1997). Salinity, temperature, oil composition, and oil recovery by waterflooding. SPE Reservoir Engineering, 12(04): 269-276, doi: 10.2118/36680-PA. ##
[32]. Zhang, P., & Austad, T. (2005, June). Waterflooding in chalk: Relationship between oil recovery, new wettability index, brine composition and cationic wettability modifier. In SPE Europec featured at EAGE Conference and Exhibition? (SPE-94209), doi: 10.2523/94209-ms. ##
[33]. Fathi, S. J., Austad, T., & Strand, S. (2011). Water-based enhanced oil recovery (EOR) by “smart water”: Optimal ionic composition for EOR in carbonates. Energy & fuels, 25(11): 5173-5179, doi: 10.1021/ef201019k. ##
[34]..Fathi, S. J., Austad, T., & Strand, S. (2010). “Smart water” as a wettability modifier in chalk: the effect of salinity and ionic composition. Energy & fuels, 24(4): 2514-2519, doi.org/10.1021/ef901304m. ##
[35]. Al-Harrasi, A. S., Al-Maamari, R. S., & Masalmeh, S. (2012). Laboratory investigation of low salinity waterflooding for carbonate reservoirs. In Abu Dhabi International Petroleum Exhibition and Conference (pp. SPE-161468), doi: 10.2118/161468-ms. ##
[36]. Romanuka, J., Hofman, J. P., Ligthelm, D. J., Suijkerbuijk, B. M., Marcelis, A. H., Oedai, S., Brussee, N. J., van der Linde, A., Aksulu, H. and Austad, T. (2012). Low salinity EOR in carbonates. In SPE Improved OilRecovery Conference? (SPE-153869). doi: 10.2118/153869-ms. ##
[37]. Kazempour, M., Gregersen, C. S., & Alvarado, V. (2013). Mitigation of anhydrite dissolution in alkaline floods through injection of conditioned water. Fuel, 107, 330-342, doi: 10.1016/j.fuel.2012.10.003. ##
[38]. Blounot, C. W., & Dickson, F. W. (1969). The solubility of anhydrite (CaSO4) in NaCl-H2O from 100 to 450 C and 1 to 1000 bars. Geochimica et Cosmochimica Acta, 33(2): 227-245, doi: 10.1016/0016-7037(69)90140-9. ##
[39]. Li, J., & Duan, Z. (2011). A thermodynamic model for the prediction of phase equilibria and speciation in the H2O–CO2–NaCl–CaCO3–CaSO4 system from 0 to 250 C, 1 to 1000 bar with NaCl concentrations up to halite saturation. Geochimica et Cosmochimica Acta, 75(15), 4351-4376, doi: 10.1016/j.gca.2011.05.019. ##
[40]. Freyer, D., & Voigt, W. (2004). The measurement of sulfate mineral solubilities in the Na-K-Ca-Cl-SO4-H2O system at temperatures of 100, 150 and 200 C. Geochimica et Cosmochimica Acta, 68(2), 307-318, doi: 10.1016/S0016-7037(03)00215-1. ##
[41]. Shariatpanahi, S. F., Strand, S., & Austad, T. (2011). Initial wetting properties of carbonate oil reservoirs: effect of the temperature and presence of sulfate in formation water. Energy & fuels, 25(7), 3021-3028, doi.org/10.1021/ef200033h. ##
[42]. Austad, T., Shariatpanahi, S. F., Strand, S., Aksulu, H., & Puntervold, T. (2015). Low salinity EOR effects in limestone reservoir cores containing anhydrite: a discussion of the chemical mechanism. Energy & Fuels, 29(11), 6903-6911, doi: 10.1021/acs.energyfuels.5b01099. ##
[43]. Yousef, A. A., Al-Saleh, S., Al-Kaabi, A., & Al-Jawfi, M. (2011). Laboratory investigation of the impact of injection-water salinity and ionic content on oil recovery from carbonate reservoirs. SPE Reservoir Evaluation & Engineering, 14(05), 578-593, doi.org/10.2118/137634-PA. ##
[44]. Al-Shalabi, E. W., & Sepehrnoori, K. (2016). A comprehensive review of low salinity/engineered water injections and their applications in sandstone and carbonate rocks. Journal of Petroleum Science and Engineering, 139, 137-161, doi: 10.1016/j.petrol.2015.11.027. ##
[45]. Uetani, T., Kaido, H., & Yonebayashi, H. (2019, March). Investigation of anhydrite dissolution as a potential low salinity waterflooding mechanism using carbonate reservoir rocks. In International Petroleum Technology Conference (p. D021S029R005). IPTC, doi.org/10.2523/IPTC-19133-MS. ##
[46]. Shariatpanahi, S. F., Hopkins, P., Aksulu, H., Strand, S., Puntervold, T., & Austad, T. (2016). Water based EOR by wettability alteration in dolomite. Energy & Fuels, 30(1), 180-187, doi: 10.1021/acs.energyfuels.5b02239. ##