رویکردی جامع برای ارزیابی و اولویت‌بندی ریسک‌های ازدیاد‌برداشت: مطالعه‌موردی ازدیادبرداشت آب‌پایه در یکی از میادین نفتی جنوب غربی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده ازدیادبرداشت از مخازن نفت و گاز، پردیس توسعه و فناوری صنایع بالادستی نفت، پژوهشگاه صنعت نفت، تهران، ایران

چکیده

باتوجه به ضرورت استمرار و افزایش تولید از مخازن بزرگ کشور به ویژه مخازن نفتی جنوب غربی ایران که بـه نیمـه دوم عمـر تولیـدی خـود رسـیده‌اند و تولید طبیعـی از آن‌ها در معـرض کاهـش قـرارگرفتـه‌اسـت، ازدیادبرداشت آب‌پایه به‌عنوان یکی ازطرح‌های ازدیادبرداشت در یکی از این میادین مورد مطالعه قرار گرفته‌است. با توجه به‌وجود عدم قطعیت‌ها در شناخت، توصیف و مدل‌سازی مخزن وکمبود داده‌های دقیق/قطعی، شناسایی وکنترل ریسک‌های ازدیادبرداشت از میدان عموماً در طرح‌های ازدیادبرداشت مورد توجه جدی قرار می‌گیرند؛ لیکن در این حوزه پژوهش‌های اندکی با بهره‌مندی از ادبیات مدیریت ریسک به‌انجام‌رسیده‌است. هدف ازاین پژوهش آن‌است که با بهره‌گیری ازیکی از تکنیک‌های مرسوم در ارزیابی ریسک با عنوان تجزیه‌تحلیل حالات خطا و اثرات ناشی ازآن رویکردی جامع و روشمند برای ارزیابی ریسک‌های ازدیادبرداشت ازمیادین هیدروکربوری ارائه ونتایج به‌کارگیری آن دریکی ازمیادین نفتی جنوب‌غربی‌ایران برای ارزیابی واولویت‌بندی ریسک‌های ازدیادبرداشت آب‌پایه نمایش داده‌شود. بدین‌منظور با استفاده ازنظرات خبرگان (در حوزه‌های مختلف اعم ازداده واطلاعات، مدل‌سازی و شبیه‌سازی وطراحی، مشخصه‌سازی وتوصیف مخزن، عملیات و اجرای طرح، پایش وبهینه‌سازی، توسعه‌مخزن)، 33 عنوان ریسک بالقوه از منظر فنی (داده‌ها، مدل‌سازی و تحلیل)، عملیاتی/ اجرایی، اقتصادی، سیاسی وسازمانی شناسایی‌شد. براساس طرح‌مطالعاتی‌میدان، ضمن بررسی خواص استاتیک ودینامیک مخزن وهمچنین خواص وپراکندگی شکاف، سه ناحیه تحت عنوان سکتور 1 (غربی) و سکتور 2 (مرکزی) و سکتور 3 (شرقی) مشخص شده وریسک‌های شناسایی‌شده براساس سه پارامتر احتمال ‌رخداد، شدت‌تأثیر و قابلیت‌تشخیص امتیازدهی شدند. براین‌اساس و درچارچوب تکنیک مذکور،‌ ریسک‌ها اولویت‌بندی شده و ریسک‌های بحرانی/دارای‌اولویت درهریک از سه سکتور به‌طور جداگانه تعیین‌شد؛ به‌طورخلاصه می‌توان گفت عدم‌کفایت تعداد داده‌های معتبر آزمایشگاهی درارتباط باخواص فیزیکی ورفتار فازی سیال دررابطه بانمونه‌های گرفته‌شده، ضعف مدل پیش‌بینی رفتار فازی سیال، ضعف تطبیق تاریخچه شبیه‌سازی مدل‌پایه‌مخازن وضعف تحلیل‌داده‌هاو اطلاعات حاصل ازپایش عملکردروش ازدیاد‌برداشت به‌عنوان ریسک‌های اولویت‌دار مشترک درتمامی سکتورها شناسایی شدند. درپایان اقدامات کنترلی متناسب باریسک‌های دارای‌اولویت، ارائه گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Comprehensive Approach for Assessing and Prioritizing EOR Risks: a Case Study of Water based EOR in an Oil Field in Southwest Iran

نویسندگان [English]

  • Azadeh Dabbaghi
  • Shima Ebrahimzadeh rajaee
  • Mohammad Parvazdavani
  • Shahab Gerami
EOR Study Center, Petroleum Engineering Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
چکیده [English]

Due to the necessity and importance of considering risks, attention is generally given to the identification, assessment, and control of risks in EOR (Enhanced Oil Recovery) studies. The aim of this article is to provide a preliminary and comprehensive research methodology for EOR risk assessment using the FMEA (Failure Mode and Effects Analysis) method. In addition, the results of its application for EOR risk assessment and prioritization in an oil field located in southwest Iran are presented step by step. Due to the variations in the fracture network distribution and, consequently, the divergent performance of Enhanced Oil Recovery (EOR) scenarios in different parts of the reservoir, the study focused on three sectors: western, central, and eastern. The critical risks identified across all three sectors include the “Insufficient number of valid laboratory data related to the physical properties and fluid phase behavior in relation to the samples taken,” “Weakness of the fluid phase behavior prediction model,” “Weakness in matching the history of simulation of the base model of the reservoir,” and “Weakness in analyzing the data gathered from performance monitoring of EOR.” In conclusion, control actions necessary for eliminating the root causes or mitigating the effects of these critical risks were outlined.

کلیدواژه‌ها [English]

  • Risk Assessment
  • Water Based EOR
  • Prioritizing
  • FMEA
  • Occurrence
  • Severity
[1] مهیاری، ش. و صنیعی، م. (1393). آنالیز غربال‌گری روش‌های مختلف ازدیاد‌برداشت نفت با استفاده از شبکه‌های عصبی مصنوعی برای تعدادی از مخازن جنوب‌غرب ایران، ماهنامه علمی اکتشاف و تولید نفت و گاز، (115)، 62-65.‎##
[2] مرادی، م. (1396) بررسی وضعیت افزایش ضریب بازیافت و ازدیاد‌برداشت در میادین نفتی ایران، ماهنامه علمی اکتشاف و تولید نفت و گاز،  (145), 28-35.‎ ##
[3] حاجی‌زاده، ع. (1392). آسیب‌شناسی اجرای روش‌های ازدیاد‌برداشت در ایران، ماهنامه علمی اکتشاف و تولید نفت و گاز،  (99), 10-13.‎ ##
[4] مطهری، م.، رفیع‌زاده، م.، پیشوایی، م. ر. و احمدی، م. (1400). انتخاب مکان پیاده‌سازی پایلوت ازدیاد‌برداشت در توسعه میادین هیدروکربنی بالغ با استفاده از تلفیق روش‌های تاپسیس و خوشه‌بندی هیبریدی، پژوهش نفت، 118، 16-3، doi:10.22078/pr.2020.4303.2951.. ##
[5]. Khojastehmehr, M., Madani, M., & Daryasafar, A. (2019). Screening of enhanced oil recovery techniques for Iranian oil reservoirs using TOPSIS algorithm, Energy Reports, 5, 529-544, doi.org/10.1016/j.egyr.2019.04.011. ##
[6]. Siena, M., Guadagnini, A., Rossa, E. D., Lamberti, A., Masserano, F., & Rotondi, M. (2016). A novel enhanced-oil-recovery screening approach based on Bayesian clustering and principal-component analysis, SPE Reservoir Evaluation & Engineering, 19(03): 382-390, doi.org/10.2118/174315-PA . ##
[7]. Kumar Pandey, R., Gandomkar, A., Vaferi, B., Kumar, A., & Torabi, F. (2023). Supervised deep learning-based paradigm to screen the enhanced oil recovery scenarios, Scientific Reports, 13(1): 4892. ##
[8]. Alvarado, V., & Manrique, E. (2010). Enhanced oil recovery: field planning and development strategies, Gulf Professional Publishing. ##
[9]. Riazi, F., Dehbozorgi, M. H., Feylizadeh, M. R., & Riazi, M. (2023). Enhanced oil recovery prioritization based on feasibility criteria using intuitionistic fuzzy multiple attribute decision making: a case study in an oil reservoir, Petroleum Science and Technology, 1-19, doi.org/10.1080/10916466.2023.2218890. ##
[10]. Talabi, O., Didanloo, A., Harun, M. F., & Traboulay, I. (2019). An integrated operations framework for enhanced oil recovery EOR management. In SPE Oil and Gas India Conference and Exhibition , (D022S034R001), SPE. doi: https://doi.org/10.2118/194663-MS. ##
[11]. Tiwari, S., Abdullah, M., Al-Dhuwaihi, A., & Al-Ajmi, M. (2017). De-risking chemical EOR pilot in a giant carbonate reservoir of Kuwait during pre-pilot phase. In SPE Kuwait Oil & Gas Show and Conference. OnePetro, doi: https://doi.org/10.2118/187566-MS. ##
[12]. Yuan, B., & Wood, D. (Eds.). (2018). Formation damage during improved oil recovery: Fundamentals and applications, Gulf Professional Publishing. ##
[13]. Watson, C. C. (2011). Risk assessment using the three dimensions of probability (likelihood), severity, and level of control, In 29th International Systems Safety Conference, M11-0220. ##
[14]. Al-Mayan, H., Winkler, M., Kamal, D., AlMahrooqi, S., & AlMaraghi, E. (2016). Integrated EOR screening of major kuwait oil fields using qualitative, Quantitative and Risk Screening Criteria. In SPE EOR Conference at Oil and Gas West Asia, (D011S002R003). SPE. doi: https://doi.org/10.2118/179751-MS. ##
[15]. Pathak, A., Tiwari, S., & Al-Ajmai, M. (2018). EOR-the business unusual: north kuwait's first ASP pilot in a carbonate reservoir, In SPE EOR Conference at Oil and Gas West Asia, (D011S005R001). SPE. https://doi.org/10.2118/190354-MS. ##
[16]. AlSuwaidi, M. H., & AlBreiki, N. A. (2016). Mitigating the impact of CO2 breakthrough within EOR projects on the surface facilities integrity, In Abu Dhabi International Petroleum Exhibition & Conference, OnePetro, doi: https://doi.org/10.2118/182895-MS. ##
[17]. https://www.iso.org/standards.html. ##
[18]. https://www.dsiintl.com/.##
[19]. https://www.sae.org/standards/.##
[20]. https://www.aiag.org/.##
[21]. Fenerci, A. H. (2020). Fuzzy FMEA risk analysis on chemical industry, (Master's thesis, Eastern Mediterranean University (EMU)-Doğu Akdeniz Üniversitesi (DAÜ)), hdl.handle.net/11129/5720. ##
[22]. Rachmantyo, H., Ridhosari, B., & Rahman, A. (2023). Failure risk analysis in amine contactor unit using failure mode and effect analysis (FMEA) Method at PT X, In Proceedings of the International Conference on Sustainable Engineering, Infrastructure and Development, ICO-SEID 2022, 23-24 November 2022, Jakarta, Indonesia, doi.org/10.4108/eai.23-11-2022.2341590. ##
[23]. رضایی، ک.، سیدی، م. و نوری، ب. (1384). تجزیه و تحلیل حالات خطا و اثرات ناشی از آن، انتشارات آتنا. ##
[24]. Sotoodeh, K. (2023). Safety engineering in the oil and gas industry. Taylor and Francis Group, CRC Press. ##
[25]. Sethi, A., & Chutima, P. (2022). The application of FMEA to study the critical barriers to deploying carbon capture and storage in a Thai petroleum refinery, International Journal of Oil, Gas and Coal Technology, 31(2): 137-165, doi.org/10.1504/IJOGCT.2022.125368. ##
[26]. Li, B., Guo, B., Li, H., Feng, Y., & Lee, J. (2015). Leak risk assessment for plugged wells in carbon sequestration projects. Journal of Sustainable Energy Engineering, 3(1): 44-65. ##
[27]. Rabiei, M. (2011). Excess water production diagnosis in oil fields using ensemble classifiers (Doctoral dissertation, Curtin University), hdl.handle.net/20.500.11937/801. ##
[28]. Skrettingland, K., Ulland, E.N., Ravndal, O., Tangen, M., Kristoffersen, J. B., Stenerud, V. R., Dalen, V., Standnes, D. C., Fevang, Ø., Mevik, K. M. and McIntosh, N. (2016). April. Snorre in-depth water diversion-new operational concept for large scale chemical injection from a shuttle tanker, In SPE Improved Oil Recovery Conference?, SPE-179602, doi.org/10.2118/179602-MS . ##
[29]. Wang, J., Lili, W., Yonghao, L., & Yueping, Z. (2008). The application of high integrity protection systems to prevent topside overpressure which caused by water injection, In Abu Dhabi International Petroleum Exhibition and Conference, SPE-117810), doi.org/10.2118/117810-MS . ##
[30]. Kabyl, A., Yang, M., Abbassi, R., & Li, S. (2020). A risk-based approach to produced water management in offshore oil and gas operations, Process safety and Environmental protection, 139, 341-361, doi.org/10.1016/j.psep.2020.04.021. ##
[31]. Okba, D. (2005). Saharan aquifers protection in oil and gas upstream activities in algeria: a sustainable-development challenge, In International Petroleum Technology Conference, IPTC-10775, IPTC, doi.org/10.2523/IPTC-10775-MS. ##
[32] نوذری، ا.،‌ یوسفی، ح. و جعفرزاده، ن. (1391). ارزیابی و مدیریت ریسک خفاری به روش FMEA مطالعه موردی میدان اهواز، اولین همایش ملی حفاظت و برنامه‌ریزی محیط زیست، اسفندماه. ##
[33]. Cheraghi, M., Karbassi, A., Monavari, S. M., & Baghvand, A. (2018). Environmental risk management associated with the development one of oil fields in southwestern Iran using AHP and FMEA methods, Anthropogenic Pollution, 2(2): 41-54. ##
[34]. Keyghobadi, A. R., Ebadi, A., Yeganegi, M. R., & Motadel, M. R. (2020). The analysis of sustainable supply chain risks based on the FMEA method in the oil and gas industry and factors affecting risk management, Petroleum Business Review, 4(1): 95-116, doi.org/10.22050/pbr.2020.115177. ##
[35]. Feili, H.R., Amanipour, H., Gharehgozli, H.R. (2012). utilization of fmea technique in refinery facilities: an illustrative example of prioritizing high-risk malfunctions in refinery towers, the First International Conference of Oil, Gas Petrochemical and Power plant, Tehran. ##
[36]. Mikulak RJ, McDermott R, Beauregard M (2009) The basics of FMEA. CRC Press. ##
[37]. Carlson, C. (2012). Effective FMEAs: Achieving safe, reliable, and economical products and processes using failure mode and effects analysis, 1, John Wiley & Sons. ##
[38]. Liu HC (2019) Improved FMEA methods for proactive healthcare risk analysis. Springer Singapore. ##
[39]. دبیری، غ.، غدیری ثانی، م. و ودایع خیری، ح. (1392). آنالیز حالات بالقوه خرابی و آثار آن (FMEA) مفاهیم و روش پیاده‌سازی، تهران:مرکز آموزش و تحقیقات صنعتی ایران، چاپ چهارم. ##
[40]. یوسف‌زادگان،‌ م. ص.، آشتیانی، ا. م.، پیش‌بین، ا. و علی اکبری رسا، ص. (1392). مدیریت ریسک و تکنیک‌های شناسایی مخاطرات و ارزیابی ریسک ، انتشارات جهاد دانشگاهی مشهد. ##
[41]. Stagliano, A. A. (٢٠٠٤). Six Sigma Advanced Tools Pocket Guide. McGraw-Hill, New York##
[42]. نامداری، م.، رفیعی، ش. و جعفری، ع. (1390). استفاده از روش تحلیل حالات بالقوه شکست و اثرات آن (FMEA) به منظور انجام شخم مطلوب با گاوآهن برگردان دار. ماشین‌های کشاورزی, 1(1).‎ ##