بررسی المان حجمی نماینده برای تخمین پارامترهای پتروفیزیکی و دوفازی در فرآیند تزریق آب با استفاده از فیزیک سنگ دیجیتال

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی نفت، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

تعیین المان حجمی نماینده از اهمیت بالایی برخوردار است. این چالش در تعریف المان حجمی نماینده به‌دلیل ضرورت تعیین دقیق ویژگی‌های پتروفیزیکی نمونه‌های متخلخل، نقش بسیار حیاتی ایفا می‌کند. در این تحقیق، روش‌های فیزیک سنگ دیجیتال برای تعیین المان حجمی نماینده در نمونه‌ای ماسه‌سنگی استفاده شد. ابتدا، با استفاده از الگوریتم‌های پردازش تصویر از جمله حذف نوفه، تقسیم‌بندی و برش، 10 زیرنمونه به‌صورت منظم از نمونه اصلی استخراج شد. ویژگی‌های پتروفیزیکی و خواص جریان دوفازی آب-نفت از جمله میزان تخلخل مؤثر، تخلخل کل، پیچش، تراوایی مطلق، تراوایی نسبی، میزان نفت باقی‌مانده، بیشینه تراوایی نسبی آب و نقاط تلاقی در نمودارهای تراوایی نسبی آب و تراوایی نسبی نفت برحسب اشباع آب برای هر زیرنمونه با استفاده از پردازش تصویر و مدل‌سازی شبکه حفرات محاسبه شد. با رسم نمودارهای مختلف برای پارامترهای مختلف بر حسب اندازه زیرنمونه‌ها، المان حجمی نماینده تقریباً 6003 تعیین شد. انتخاب مناسب المان حجمی نماینده دقت مدل‌سازی و شبیه‌سازی را افزایش می‌دهد و درعین‌حال در مطالعات، هزینه و زمان را کاهش می‌دهد. این نتایج نشان می‌دهند که استفاده از روش‌های فیزیک سنگ دیجیتال برای تعیین المان حجمی نماینده جهت تحلیل‌های بیشتر اهمیت بسیار زیادی دارد. انتخاب نادرست آن ممکن است به نتایج غلط در فرآیند های دینامیک مانند شبیه سازی فرآیند تزریق آب در مقیاس بینجامد. در مقایسه با دیگر روش‌های تعیین المان حجمی، در این روش از خواص دینامیکی علاوه‌بر خواص استاتیکی استفاده شده است و در پایان نتایج به‌دست آمده برای هر خصوصیت با یکدیگر مقایسه شده است که موجب برتری این روش نسبت به سایر روش‌ها می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analyzing the Representative Elementary Volume for Estimating Petrophysical and Two-phase Parameters in water-flooding Process using Digital Rock Physics

نویسندگان [English]

  • Diba Memari
  • Javad Siavashi
  • Mohammad Sharifi
Department of Petroleum Engineering, AmirKabir University of Technology, Tehran, Iran
چکیده [English]

Determining the representative elementary volume (REV) is crucial for accurately assessing the petrophysical properties of porous samples. This study used digital rock physics methods on a sandstone sample to establish the REV. The process involved extracting 10 subsamples from the original sample using image processing techniques like denoising and segmentation. Petrophysical and two-phase flow properties such as effective porosity, total porosity, tortuosity, effective permeability, relative permeability, residual oil saturation, maximum water relative permeability, intersection points in relative permeability curves for water and oil, as well as the average pore radius, average throat radius, and coordination number were calculated for each sub-sample using image processing and pore network modeling. The REV was estimated to be around 6003, which helps in improving modeling accuracy and reducing costs and time in studies. This highlights the importance of digital rock physics in determining REV for further analysis.

کلیدواژه‌ها [English]

  • Digital Rock Physics
  • Representative Elementary Volume
  • Two-phase Flow
  • Image Processing
  • Pore Network Modeling
[1]. Mostaghimi, P., Blunt, M. J., & Bijeljic, B. (2013). Computations of absolute permeability on micro-CT images. Mathematical Geosciences, 45, 103-125, doi.org/10.1007/s11004-012-9431-4.##
[2]. Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A. and Pentland, C., (2013). Pore-scale imaging and modelling, Advances in Water Resources, 51, 197-216, doi.org/10.1016/j.advwatres.2012.03.003. ##
[3]. Bultreys, T., De Boever, W., & Cnudde, V. (2016). Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art. Earth-Science Reviews, 155, 93-128, doi.org/10.1016/j.earscirev.2016.02.001. ##
[4]. Siavashi, J., Najafi, A., Ebadi, M., & Sharifi, M. (2022). A CNN-based approach for upscaling multiphase flow in digital sandstones. Fuel, 308, 122047. doi.org/10.1016/j.fuel.2021.122047. ##
[5]. Saxena, N., Hows, A., Hofmann, R., Alpak, F. O., Freeman, J., Hunter, S., & Appel, M. (2018). Imaging and computational considerations for image computed permeability: operating envelope of digital rock physics. Advances in Water Resources, 116, 127-144. doi.org/10.1016/j.advwatres.2018.04.001. ##
[6]. Bashtani, F., & Kantzas, A. (2020). Scale-up of pore-level relative permeability from micro-to macro-scale. The Canadian Journal of Chemical Engineering, 98(9): 2032-2051, doi.org/10.1002/cjce.23745. ##
[7]. Abu-Al-Saud, M., Gmira, A., Al-Enezi, S., & Yousef, A. (2020, January). Pore-scale simulation of fluid flow in carbonates using micro-CT scan images. In International Petroleum Technology Conference (D022S160R004). IPTC.doi.org/10.2523/iptc-19832-ms. ##
[8]. Guo, C., Wang, X., Wang, H., He, S., Liu, H., & Zhu, P. (2018). Effect of pore structure on displacement efficiency and oil-cluster morphology by using micro computed tomography (μCT) technique. Fuel, 230, 430-439.doi.org/10.1016/j.fuel.2018.05.058. ##
[9]. Diwakar, M., & Kumar, M. (2018). A review on CT image noise and its denoising. Biomedical Signal Processing and Control, 42, 73-88. doi.org/10.1016/j.bspc.2018.01.010. ##
[10]. Bird, M. B., Butler, S. L., Hawkes, C. D., & Kotzer, T. (2014). Numerical modeling of fluid and electrical currents through geometries based on synchrotron X-ray tomographic images of reservoir rocks using Avizo and COMSOL. Computers & Geosciences, 73, 6-16. doi.org/10.1016/j.cageo.2014.08.009. ##
[11]. Zakirov, T., & Galeev, A. (2019). Absolute permeability calculations in micro-computed tomography models of sandstones by Navier-Stokes and lattice Boltzmann equations. International Journal of Heat and Mass Transfer, 129, 415-426. doi.org/10.1016/j.ijheatmasstransfer.2018.09.119. ##
[12]. Sidorenko, M., Orlov, D., Ebadi, M., & Koroteev, D. (2021). Deep learning in denoising of micro-computed tomography images of rock samples. Computers & Geosciences, 151, 104716.b doi.org/10.1016/j.cageo.2021.104716. ##
[13]. Ramstad, T., Berg, C. F., & Thompson, K. (2019). Pore-scale simulations of single-and two-phase flow in porous media: approaches and applications. Transport in Porous Media, 130, 77-104. doi.org/10.1007/s11242-019-01289-9. ##
[14]. Berg, C. F., Lopez, O., & Berland, H. (2017). Industrial applications of digital rock technology. Journal of Petroleum Science and Engineering, 157, 131-147. doi.org/10.1016/j.petrol.2017.06.074. ##
[15]. Raeini, A. Q., Blunt, M. J., & Bijeljic, B. (2014). Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces. Advances in Water Resources, 74, 116-126. doi.org/10.1016/j.advwatres.2014.08.012. ##
[16]. Joekar-Niasar, V., Van Dijke, M. I. J., & Hassanizadeh, S. M. (2012). Pore-scale modeling of multiphase flow and transport: achievements and perspectives. Transport in porous media, 94(2), 461-464. doi.org/10.1007/s11242-012-0047-4. ##
[17]. Dong, H., & Blunt, M. J. (2009). Pore-network extraction from micro-computerized-tomography images. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 80(3), 036307. doi.org/10.1103/PhysRevE.80.036307. ##
[18]. Sheppard, A. P., Sok, R. M., & Averdunk, H. (2005). Improved pore network extraction methods. In International Symposium of the Society of Core Analysts, 2125, 1-11. ##
[19]. Arns, J. Y., Robins, V., Sheppard, A. P., Sok, R. M., Pinczewski, W. V., & Knackstedt, M. A. (2004). Effect of network topology on relative permeability. Transport in Porous media, 55, 21-46. doi.org/10.1023/B:TIPM.0000007252.68488.43. ##
[20]. van der Linden, J. H., Narsilio, G. A., & Tordesillas, A. (2016). Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability. Physical Review E, 94(2): 022904.doi.org/10.1103/PhysRevE.94.022904. ##
[21]. Meakin, P., & Tartakovsky, A. M. (2009). Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Reviews of Geophysics, 47(3). doi.org/10.1029/2008RG000263. ##
[22]. Shan, X., & Chen, H. (1993). Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 47(3), 1815. doi.org/10.1103/PhysRevE.47.1815. ##
[23]. Garing, C., de Chalendar, J. A., Voltolini, M., Ajo-Franklin, J. B., & Benson, S. M. (2017). Pore-scale capillary pressure analysis using multi-scale X-ray micromotography. Advances in Water Resources, 104, 223-241.doi.org/10.1016/j.advwatres.2017.04.006. ##
[24]. Bultreys, T., Van Hoorebeke, L., & Cnudde, V. (2015). Multi-scale, micro-computed tomography-based pore network models to simulate drainage in heterogeneous rocks. Advances in Water Resources, 78, 36-49. doi.org/10.1016/j.advwatres.2015.02.003. ##
[25]. Neumann, R. F., Barsi-Andreeta, M., Lucas-Oliveira, E., Barbalho, H., Trevizan, W. A., Bonagamba, T. J., & Steiner, M. B. (2021). High accuracy capillary network representation in digital rock reveals permeability scaling functions. Scientific Reports, 11(1): 11370. doi.org/10.1038/s41598-021-90090-0. ##
[26]. Al-Raoush, R., & Papadopoulos, A. (2010). Representative elementary volume analysis of porous media using X-ray computed tomography. Powder Technology, 200(1-2): 69-77. doi.org/10.1016/j.powtec.2010.02.011. ##
[27]. Costanza-Robinson, M. S., Estabrook, B. D., & Fouhey, D. F. (2011). Representative elementary volume estimation for porosity, moisture saturation, and air-water interfacial areas in unsaturated porous media: Data quality implications. Water Resources Research, 47(7), doi:10.1029/2010WR009655. ##
[28]. Bruns, S., Stipp, S. L. S., & Sørensen, H. O. (2017). Statistical representative elementary volumes of porous media determined using greyscale analysis of 3D tomograms. Advances in Water Resources, 107, 32-42, doi: https://doi.org/10.1016/j.advwatres.2017.06.002. ##
[29]. Wu, M., Wu, J., Wu, J., & Hu, B. X. (2018). A three-dimensional model for quantification of the representative elementary volume of tortuosity in granular porous media. Journal of Hydrology, 557, 128-136, doi: https://doi.org/10.1016/j.jhydrol.2017.12.030. ##
[30]. Sadeghnejad, S., Reinhardt, M., Enzmann, F., Arnold, P., Brandstätter, B., Ott, H., Wilde, F., Hupfer, S., Schäfer, T. and Kersten, M., 2023. Minkowski functional evaluation of representative elementary volume of rock microtomography images at multiple resolutions. Advances in Water Resources, 179, 104501, doi: https://doi.org/10.1016/j.advwatres.2023.104501. ##
[31]. شیرافکن، س. احمدی، م. و شعبانی م. (1402). تعیین خصوصیات فضای متخلخل یک سنگ‌ کربناته با استفاده از تصاویر میکرو سی‌تی‌اسکن توسط الگوریتم‌ شبکه عصبی پیچشی, پژوهش نفت، 33(1402-3)، 100-113، 100–113, 2023, doi: 10.22078/pr.2023.4919.3198. ##