[1]. Mostaghimi, P., Blunt, M. J., & Bijeljic, B. (2013). Computations of absolute permeability on micro-CT images. Mathematical Geosciences, 45, 103-125, doi.org/10.1007/s11004-012-9431-4.##
[2]. Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A. and Pentland, C., (2013). Pore-scale imaging and modelling, Advances in Water Resources, 51, 197-216, doi.org/10.1016/j.advwatres.2012.03.003. ##
[3]. Bultreys, T., De Boever, W., & Cnudde, V. (2016). Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art. Earth-Science Reviews, 155, 93-128, doi.org/10.1016/j.earscirev.2016.02.001. ##
[4]. Siavashi, J., Najafi, A., Ebadi, M., & Sharifi, M. (2022). A CNN-based approach for upscaling multiphase flow in digital sandstones. Fuel, 308, 122047. doi.org/10.1016/j.fuel.2021.122047. ##
[5]. Saxena, N., Hows, A., Hofmann, R., Alpak, F. O., Freeman, J., Hunter, S., & Appel, M. (2018). Imaging and computational considerations for image computed permeability: operating envelope of digital rock physics. Advances in Water Resources, 116, 127-144. doi.org/10.1016/j.advwatres.2018.04.001. ##
[6]. Bashtani, F., & Kantzas, A. (2020). Scale-up of pore-level relative permeability from micro-to macro-scale. The Canadian Journal of Chemical Engineering, 98(9): 2032-2051, doi.org/10.1002/cjce.23745. ##
[7]. Abu-Al-Saud, M., Gmira, A., Al-Enezi, S., & Yousef, A. (2020, January). Pore-scale simulation of fluid flow in carbonates using micro-CT scan images. In International Petroleum Technology Conference (D022S160R004). IPTC.doi.org/10.2523/iptc-19832-ms. ##
[8]. Guo, C., Wang, X., Wang, H., He, S., Liu, H., & Zhu, P. (2018). Effect of pore structure on displacement efficiency and oil-cluster morphology by using micro computed tomography (μCT) technique. Fuel, 230, 430-439.doi.org/10.1016/j.fuel.2018.05.058. ##
[9]. Diwakar, M., & Kumar, M. (2018). A review on CT image noise and its denoising. Biomedical Signal Processing and Control, 42, 73-88. doi.org/10.1016/j.bspc.2018.01.010. ##
[10]. Bird, M. B., Butler, S. L., Hawkes, C. D., & Kotzer, T. (2014). Numerical modeling of fluid and electrical currents through geometries based on synchrotron X-ray tomographic images of reservoir rocks using Avizo and COMSOL. Computers & Geosciences, 73, 6-16. doi.org/10.1016/j.cageo.2014.08.009. ##
[11]. Zakirov, T., & Galeev, A. (2019). Absolute permeability calculations in micro-computed tomography models of sandstones by Navier-Stokes and lattice Boltzmann equations. International Journal of Heat and Mass Transfer, 129, 415-426. doi.org/10.1016/j.ijheatmasstransfer.2018.09.119. ##
[12]. Sidorenko, M., Orlov, D., Ebadi, M., & Koroteev, D. (2021). Deep learning in denoising of micro-computed tomography images of rock samples. Computers & Geosciences, 151, 104716.b doi.org/10.1016/j.cageo.2021.104716. ##
[13]. Ramstad, T., Berg, C. F., & Thompson, K. (2019). Pore-scale simulations of single-and two-phase flow in porous media: approaches and applications. Transport in Porous Media, 130, 77-104. doi.org/10.1007/s11242-019-01289-9. ##
[14]. Berg, C. F., Lopez, O., & Berland, H. (2017). Industrial applications of digital rock technology. Journal of Petroleum Science and Engineering, 157, 131-147. doi.org/10.1016/j.petrol.2017.06.074. ##
[15]. Raeini, A. Q., Blunt, M. J., & Bijeljic, B. (2014). Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces. Advances in Water Resources, 74, 116-126. doi.org/10.1016/j.advwatres.2014.08.012. ##
[16]. Joekar-Niasar, V., Van Dijke, M. I. J., & Hassanizadeh, S. M. (2012). Pore-scale modeling of multiphase flow and transport: achievements and perspectives. Transport in porous media, 94(2), 461-464. doi.org/10.1007/s11242-012-0047-4. ##
[17]. Dong, H., & Blunt, M. J. (2009). Pore-network extraction from micro-computerized-tomography images. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 80(3), 036307. doi.org/10.1103/PhysRevE.80.036307. ##
[18]. Sheppard, A. P., Sok, R. M., & Averdunk, H. (2005). Improved pore network extraction methods. In International Symposium of the Society of Core Analysts, 2125, 1-11. ##
[19]. Arns, J. Y., Robins, V., Sheppard, A. P., Sok, R. M., Pinczewski, W. V., & Knackstedt, M. A. (2004). Effect of network topology on relative permeability. Transport in Porous media, 55, 21-46. doi.org/10.1023/B:TIPM.0000007252.68488.43. ##
[20]. van der Linden, J. H., Narsilio, G. A., & Tordesillas, A. (2016). Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability. Physical Review E, 94(2): 022904.doi.org/10.1103/PhysRevE.94.022904. ##
[21]. Meakin, P., & Tartakovsky, A. M. (2009). Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Reviews of Geophysics, 47(3). doi.org/10.1029/2008RG000263. ##
[22]. Shan, X., & Chen, H. (1993). Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 47(3), 1815. doi.org/10.1103/PhysRevE.47.1815. ##
[23]. Garing, C., de Chalendar, J. A., Voltolini, M., Ajo-Franklin, J. B., & Benson, S. M. (2017). Pore-scale capillary pressure analysis using multi-scale X-ray micromotography. Advances in Water Resources, 104, 223-241.doi.org/10.1016/j.advwatres.2017.04.006. ##
[24]. Bultreys, T., Van Hoorebeke, L., & Cnudde, V. (2015). Multi-scale, micro-computed tomography-based pore network models to simulate drainage in heterogeneous rocks. Advances in Water Resources, 78, 36-49. doi.org/10.1016/j.advwatres.2015.02.003. ##
[25]. Neumann, R. F., Barsi-Andreeta, M., Lucas-Oliveira, E., Barbalho, H., Trevizan, W. A., Bonagamba, T. J., & Steiner, M. B. (2021). High accuracy capillary network representation in digital rock reveals permeability scaling functions. Scientific Reports, 11(1): 11370. doi.org/10.1038/s41598-021-90090-0. ##
[26]. Al-Raoush, R., & Papadopoulos, A. (2010). Representative elementary volume analysis of porous media using X-ray computed tomography. Powder Technology, 200(1-2): 69-77. doi.org/10.1016/j.powtec.2010.02.011. ##
[27]. Costanza-Robinson, M. S., Estabrook, B. D., & Fouhey, D. F. (2011). Representative elementary volume estimation for porosity, moisture saturation, and air-water interfacial areas in unsaturated porous media: Data quality implications. Water Resources Research, 47(7), doi:10.1029/2010WR009655. ##
[28]. Bruns, S., Stipp, S. L. S., & Sørensen, H. O. (2017). Statistical representative elementary volumes of porous media determined using greyscale analysis of 3D tomograms. Advances in Water Resources, 107, 32-42, doi: https://doi.org/10.1016/j.advwatres.2017.06.002. ##
[29]. Wu, M., Wu, J., Wu, J., & Hu, B. X. (2018). A three-dimensional model for quantification of the representative elementary volume of tortuosity in granular porous media. Journal of Hydrology, 557, 128-136, doi: https://doi.org/10.1016/j.jhydrol.2017.12.030. ##
[30]. Sadeghnejad, S., Reinhardt, M., Enzmann, F., Arnold, P., Brandstätter, B., Ott, H., Wilde, F., Hupfer, S., Schäfer, T. and Kersten, M., 2023. Minkowski functional evaluation of representative elementary volume of rock microtomography images at multiple resolutions. Advances in Water Resources, 179, 104501, doi: https://doi.org/10.1016/j.advwatres.2023.104501. ##
[31]. شیرافکن، س. احمدی، م. و شعبانی م. (1402). تعیین خصوصیات فضای متخلخل یک سنگ کربناته با استفاده از تصاویر میکرو سیتیاسکن توسط الگوریتم شبکه عصبی پیچشی, پژوهش نفت، 33(1402-3)، 100-113، 100–113, 2023, doi: 10.22078/pr.2023.4919.3198. ##