[1]. Tavakkoli, M., Grimes, M. R., Liu, X., Garcia, C. K., Correa, S. C., Cox, Q. J., & Vargas, F. M. (2015). Indirect method: a novel technique for experimental determination of asphaltene precipitation. Energy & Fuels, 29(5), 2890-2900, doi: 10.1021/EF502188U.##
[2]. Shojaati, F., Mousavi, S. H., Riazi, M., Torabi, F., & Osat, M. (2017). Investigating the effect of salinity on the behavior of asphaltene precipitation in the presence of emulsified water, Industrial & Engineering Chemistry Research, 56(48): 14362-14368, doi: 10.1021/ACS.IECR.7B03331. ##
[3]. Farhadi, H., Ayatollahi, S., & Fatemi, M. (2021). The effect of brine salinity and oil components on dynamic IFT behavior of oil-brine during low salinity water flooding: Diffusion coefficient, EDL establishment time, and IFT reduction rate, Journal of Petroleum Science and Engineering, 196, 107862, doi: 10.1016/j.petrol.2020.107862. ##
[4]. Lashkarbolooki, M., Ayatollahi, S., & Riazi, M. (2014). Effect of salinity, resin, and asphaltene on the surface properties of acidic crude oil/smart water/rock system, Energy & Fuels, 28(11): 6820-6829, doi: 10.1021/EF5015692. ##
[5]. Lashkarbolooki, M., Ayatollahi, S., & Riazi, M. (2014). The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic–acidic crude oil reservoir during smart water injection, Journal of Chemical & Engineering Data, 59(11): 3624-3634, doi: 10.1021/JE500730E. ##
[6]. Salehpour, M., Sakhaei, Z., Salehinezhad, R., Mahani, H., & Riazi, M. (2021). Contribution of water-in-oil emulsion formation and pressure fluctuations to low salinity waterflooding of asphaltic oils: A pore-scale perspective. Journal of Petroleum Science and Engineering, 203, 108597, doi: 10.1016/j.petrol.2021.108597. ##
[7]. Joonaki, E., Youzband, A. H., Burgass, R., & Tohidi, B. (2017). Effect of water chemistry on asphaltene stabilised water in oil emulsions-A new search for low salinity water injection mechanism. In 79th EAGE Conference and Exhibition , 2017(1): 1-5), European Association of Geoscientists & Engineers, doi: 10.3997/2214-4609.201701297/CITE/REFWORKS. ##
[8]. Shahsavani, B., Riazi, M., & Malayeri, M. R. (2021). Asphaltene instability in the presence of emulsified aqueous phase. Fuel, 305, 121528, doi: 10.1016/j.fuel.2021.121528. ##
[9]. Tan, X., Fenniri, H., & Gray, M. R. (2009). Water enhances the aggregation of model asphaltenes in solution via hydrogen bonding, Energy & Fuels, 23(7): 3687–3693, doi: 10.1021/EF900228S. ##
[10]. Nassar, N. N., Hassan, A., & Pereira-Almao, P. (2011). Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation, Journal of Colloid and Interface Science, 360(1): 233-238, doi: 10.1016/j.jcis.2011.04.056. ##
[11]. Ashoori, S., & Balavi, A. (2014). An investigation of asphaltene precipitation during natural production and the CO2 injection process, Petroleum Science and Technology, 32(11): 1283-1290, doi: 10.1080/10916466.2011.633590. ##
[12]. Hu, C., Sabio, J. C., Yen, A., Joshi, N., & Hartman, R. L. (2015). Role of water on the precipitation and deposition of asphaltenes in packed-bed microreactors, Industrial & Engineering Chemistry Research, 54(16): 4103-4112, doi: 10.1021/IE5038775. ##
[13]. Hu, C., Garcia, N.C., Xu, R., Cao, T., Yen, A., Garner, S.A., Macias, J.M., Joshi, N. and Hartman, R.L., 2016. Interfacial properties of asphaltenes at the heptol–brine interface, Energy & Fuels, 30(1): 80-87, doi: 10.1021/ACS.ENERGYFUELS.5B01855. ##
[14]. Shojaati, F., Mousavi, S. H., Riazi, M., Torabi, F., & Osat, M. (2017). Investigating the effect of salinity on the behavior of asphaltene precipitation in the presence of emulsified water, Industrial & Engineering Chemistry Research, 56(48), 14362-14368, doi: 10.1021/ACS.IECR.7B03331/SUPPL_FILE/IE7B03331_SI_001.PDF. ##
[15]. Azari, V., Abolghasemi, E., Hosseini, A., Ayatollahi, S., & Dehghani, F. (2018). Electrokinetic properties of asphaltene colloidal particles: Determining the electric charge using micro electrophoresis technique, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 541, 68-77, doi: 10.1016/J.COLSURFA.2018.01.029. ##
[16]. Joonaki, E., Buckman, J., Burgass, R., & Tohidi, B. (2019). Water versus asphaltenes; liquid–liquid and solid–liquid molecular interactions unravel the mechanisms behind an improved oil recovery methodology, Scientific reports, 9(1): 11369, doi: 10.1038/s41598-019-47782-5. ##
[17]. Taherian, Z., Dehaghani, A. S., Ayatollahi, S., & Kharrat, R. (2022). The mechanistic investigation on the effect of the crude oil/brine interaction on the interface properties: A study on asphaltene structure, Journal of Molecular Liquids, 360, 119495, doi: 10.1016/j.molliq.2022.119495. ##
[18]. Ghasemian, J., Riahi, S., Ayatollahi, S., & Mokhtari, R. (2019). Effect of salinity and ion type on formation damage due to inorganic scale deposition and introducing optimum salinity, Journal of Petroleum Science and Engineering, 177, 270-281, doi: 10.1016/J.PETROL.2019.02.019. ##
[19]. Ali, M. A., & Islam, M. R. (1998). The effect of asphaltene precipitation on carbonate-rock permeability: an experimental and numerical approach. SPE Production & Facilities, 13(03): 178-183, doi: 10.2118/50963-PA. ##
[20]. Jafari Behbahani, T., Ghotbi, C., Taghikhani, V., & Shahrabadi, A. (2013). Asphaltene deposition under dynamic conditions in porous media: theoretical and experimental investigation. Energy & Fuels, 27(2): 622-639, doi: 10.1021/EF3017255. ##
[21]. Kordestany, A., Hassanzadeh, H., & Abedi, J. (2019). An experimental approach to investigating permeability reduction caused by solvent-induced asphaltene deposition in porous media, The Canadian Journal of Chemical Engineering, 97(1): 361-371, doi: 10.1002/CJCE.23238. ##
[22]. Mansouri, M., Ahmadi, Y., & Jafarbeigi, E. (2022). Introducing a new method of using nanocomposites for preventing asphaltene aggregation during real static and dynamic natural depletion tests. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(3), 7499-7513, doi: 10.1080/15567036.2022.2113937. ##
[23]. Fan, Y., Simon, S., & Sjöblom, J. (2010). Interfacial shear rheology of asphaltenes at oil–water interface and its relation to emulsion stability: Influence of concentration, solvent aromaticity and nonionic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 366(1-3): 120-128, doi: 10.1016/j.colsurfa.2010.05.034. ##
[24]. SPickering, S. U. (1907). Cxcvi.—emulsions. Journal of the Chemical Society, Transactions, 91, 2001-2021, doi: 10.1039/CT9079102001. ##
[25]. Eley, D. D., Hey, M. J., & Symonds, J. D. (1988). Emulsions of water in asphaltene-containing oils 1. Droplet size distribution and emulsification rates. Colloids and surfaces, 32, 87-101, doi: 10.1016/0166-6622(88)80006-4. ##
[26]. Chevalier, Y., & Bolzinger, M. A. (2013). Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 23-34, doi: 10.1016/j.colsurfa.2013.02.054. ##
[27]. Wang, Z., Babadagli, T., & Maeda, N. (2021). Generation of pickering emulsions by activating natural asphaltenes as nano materials: An experimental analysis for cost-effective heavy-oil recovery, Journal of Molecular Liquids, 339, 116759, doi: 10.1016/J.MOLLIQ.2021.116759. ##
[28]. Aveyard, R., Binks, B. P., & Clint, J. H. (2003). Emulsions stabilised solely by colloidal particles, Advances in Colloid and Interface Science, 100, 503-546, doi: 10.1016/S0001-8686(02)00069-6. ##
[29]. Binks, B. P., & Lumsdon, S. O. (1999). Stability of oil-in-water emulsions stabilised by silica particles. Physical Chemistry Chemical Physics, 1(12), 3007-3016, doi: 10.1039/a902209k. ##
[30]. Binks, B. P. (2002). Particles as surfactants—similarities and differences. Current opinion in colloid & interface science, 7(1-2): 21-41, doi: 10.1016/S1359-0294(02)00008-0. ##
[31]. Tharanivasan, A. K., Yarranton, H. W., & Taylor, S. D. (2012). Asphaltene precipitation from crude oils in the presence of emulsified water. Energy & Fuels, 26(11), 6869-6875, doi: 10.1021/ef301200v. ##
[32]. Wang, J., Fan, T., Buckley, J. S., & Creek, J. L. (2014, May). Impact of water cut on asphaltene deposition tendency. In Offshore Technology Conference (p. D021S024R001). OTC. doi: 10.4043/25411-MS. ##
[33]. Tavakkoli, M., Grimes, M. R., Liu, X., Garcia, C. K., Correa, S. C., Cox, Q. J., & Vargas, F. M. (2015). Indirect method: a novel technique for experimental determination of asphaltene precipitation. Energy & Fuels, 29(5), 2890-2900, doi: 10.1021/ef502188u. ##
[34]. Tavakkoli, M., Chen, A., Sung, C. A., Kidder, K. M., Lee, J. J., Alhassan, S. M., & Vargas, F. M. (2016). Effect of emulsified water on asphaltene instability in crude oils. Energy & Fuels, 30(5), 3676-3686, doi: 10.1021/ACS.ENERGYFUELS.5B02180. ##
[35]. Rocha, J. A., Baydak, E. N., Yarranton, H. W., Sztukowski, D. M., Ali-Marcano, V., Gong, L., ... & Zeng, H. (2016). Role of aqueous phase chemistry, interfacial film properties, and surface coverage in stabilizing water-in-bitumen emulsions. Energy & Fuels, 30(7): 5240-5252, doi: 10.1021/acs.energyfuels.6b00114. ##
[36]. Demir, A. B., Bilgesu, H. I., & Hascakir, B. (2016, May). The effect of clay and salinity on asphaltene stability, In SPE Western Regional Meeting, SPE-180425, SPE, doi: 10.2118/180425-MS. ##
[37]. Ameri, A., Esmaeilzadeh, F., & Mowla, D. (2018). Effect of low-salinity water on asphaltene precipitation, Journal of Dispersion Science and Technology, 39(7): 1031-1039, doi: 10.1080/01932691.2017.1381616. ##
[38]. Mokhtari, R., & Ayatollahi, S. (2019). Dissociation of polar oil components in low salinity water and its impact on crude oil–brine interfacial interactions and physical properties, Petroleum Science, 16(2), 328-343, doi: 10.1007/s12182-018-0275-5. ##
[39]. Joonaki, E., Buckman, J., Burgass, R., & Tohidi, B. (2019). Water versus asphaltenes; liquid–liquid and solid–liquid molecular interactions unravel the mechanisms behind an improved oil recovery methodology, Scientific reports, 9(1): 11369, doi: 10.1038/s41598-019-47782-5. ##
[40]. Saraji, S., Goual, L., & Piri, M. (2013). Dynamic adsorption of asphaltenes on quartz and calcite packs in the presence of brine films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 434, 260-267, doi: 10.1016/j.colsurfa.2013.05.070. ##
[41]. Monjezi, R., Ghotbi, C., Jafari Behbahani, T., & Bakhshi, P. (2019). Experimental investigation of dynamic asphaltene adsorption on calcite packs: The impact of single and mixed-salt brine films, The Canadian Journal of Chemical Engineering, 97(7): 2028-2038, doi: 10.1002/cjce.23441. ##
[42]. Hosseini, A., Zare, E., Ayatollahi, S., Vargas, F. M., Chapman, W. G., Kostarelos, K., & Taghikhani, V. (2016). Electrokinetic behavior of asphaltene particles, Fuel, 178, 234-242, doi: 10.1016/j.fuel.2016.03.051. ##
[43]. Alotaibi, M. B., Nasr-El-Din, H. A., & Fletcher, J. J. (2011). Electrokinetics of limestone and dolomite rock particles, SPE Reservoir Evaluation & Engineering, 14(05), 594-603, doi: 10.2118/148701-PA. ##
[44]. Alotaibi, M. B., Nasralla, R. A., & Nasr-El-Din, H. A. (2011). Wettability studies using low-salinity water in sandstone reservoirs, SPE Reservoir Evaluation & Engineering, 14(06): 713-725, doi: 10.2118/149942-PA. ##
[45]. Mahani, H., Keya, A. L., Berg, S., Bartels, W. B., Nasralla, R., & Rossen, W. R. (2015). Insights into the mechanism of wettability alteration by low-salinity flooding (LSF) in carbonates, Energy & Fuels, 29(3): 1352-1367, doi: 10.1021/EF5023847. ##
[46]. Mahani, H., Berg, S., Ilic, D., Bartels, W. B., & Joekar-Niasar, V. (2015). Kinetics of low-salinity-flooding effect. SPE Journal, 20(01): 8-20, doi: 10.2118/165255-PA. ##
[47]. Al-Shalabi, E. W., & Ghosh, B. (2016). Effect of pore-scale heterogeneity and capillary-viscous fingering on commingled waterflood oil recovery in stratified porous media, Journal of Petroleum Engineering, 2016(1): 1708929, doi: 10.1155/2016/1708929. ##
[48]. Ahmadi, P., Asaadian, H., Khadivi, A., & Kord, S. (2019). A new approach for determination of carbonate rock electrostatic double layer variation towards wettability alteration, Journal of Molecular Liquids, 275, 682-698, doi: 10.1016/j.molliq.2018.11.106. ##
[49]. JKim, J. W., Lee, D., Shum, H. C., & Weitz, D. A. (2008). Colloid surfactants for emulsion stabilization. Advanced materials, 20(17): 3239-3243, doi: 10.1002/adma.200800484. ##
[50]. Hirsemann, D., Shylesh, S., De Souza, R.A., Diar-Bakerly, B., Biersack, B., Mueller, D. N., Martin, M., Schobert, R. and Breu, J. (2012). Large-scale, low-cost fabrication of janus-type emulsifiers by selective decoration of natural kaolinite platelets, Angewandte Chemie International Edition, 6(51): 1348-1352, doi: 10.1002/anie.201106710. ##
[51]. Diar-Bakerly, B., Hirsemann, D., Kalo, H., Schobert, R., & Breu, J. (2014). Modification of kaolinite by grafting of siderophilic ligands to the external octahedral surface, Applied Clay Science, 90, 67-72, doi: 10.1016/j.clay.2013.12.020. ##
[52]. Liang, S., Li, C., Dai, L., Tang, Q., Cai, X., Zhen, B., ... & Wang, L. (2018). Selective modification of kaolinite with vinyltrimethoxysilane for stabilization of Pickering emulsions, Applied Clay Science, 161, 282-289, doi: 10.1016/j.clay.2018.04.038. ##
[53]. Tambe, D. E., & Sharma, M. M. (1994). The effect of colloidal particles on fluid-fluid interfacial properties and emulsion stability, Advances in Colloid and Interface Science, 52, 1-63, doi: 10.1016/0001-8686(94)80039-1. ##
[54]. Kpogbemabou, D., Lecomte-Nana, G., Aimable, A., Bienia, M., Niknam, V., & Carrion, C. (2014). Oil-in-water Pickering emulsions stabilized by phyllosilicates at high solid content, Colloids and Surfaces a: Physicochemical and Engineering Aspects, 463, 85-92, doi: 10.1016/j.colsurfa.2014.09.037. ##
[55]. Cai, X., Li, C., Tang, Q., Zhen, B., Xie, X., Zhu, W., ... & Wang, L. (2019). Assembling kaolinite nanotube at water/oil interface for enhancing Pickering emulsion stability, Applied Clay Science, 172, 115-122, doi: 10.1016/j.clay.2019.02.021.
[56]. IP 143/84, 1989,‘Standard Methods for Analysis and Testing of Petroleum and Related Products’. ##
[57]. Mohammad, T., Andrew, C., Chi-An, S., & Jin, L. J. (2016). Effect of emulsified water on asphaltene instability in crude oils, doi: pubag.nal.usda.gov/catalog/5343245. ##
[58]. Vargas, F.M., Garcia-Bermudes, M., Boggara, M., Punnapala, S., Abutaqiya, M., Mathew, N., Prasad, S., Khaleel, A., Al Rashed, M. and Al Asafen, H., (2014). On the development of an enhanced method to predict asphaltene precipitation. In Offshore Technology Conference (D021S017R001). OTC., doi: 10.4043/25294-MS. ##
[59]. Lashkarbolooki, M., Riazi, M., & Ayatollahi, S. (2016). Investigation of effects of salinity, temperature, pressure, and crude oil type on the dynamic interfacial tensions, Chemical Engineering Research and Design, 115, 53-65, doi: 10.1016/j.cherd.2016.09.020. ##
[60]. Mokhtari, R., Hosseini, A., Fatemi, M., Andersen, S. I., & Ayatollahi, S. (2022). Asphaltene destabilization in the presence of an aqueous phase: The effects of salinity, ion type, and contact time, Journal of Petroleum Science and Engineering, 208, 109757, doi: 10.1016/j.petrol.2021.109757. ##
[61]. Moeini, F., Hemmati-Sarapardeh, A., Ghazanfari, M. H., Masihi, M., & Ayatollahi, S. (2014). Toward mechanistic understanding of heavy crude oil/brine interfacial tension: The roles of salinity, temperature and pressure. Fluid phase equilibria, 375, 191-200, doi: 10.1016/j.fluid.2014.04.017. ##
[62]. Lashkarbolooki, M., & Ayatollahi, S. (2018). The effects of pH, acidity, asphaltene and resin fraction on crude oil/water interfacial tension. Journal of Petroleum Science and Engineering, 162, 341-347, doi: 10.1016/j.petrol.2017.12.061. ##
[63]. Farhadi, H., Fatemi, M., & Ayatollahi, S. (2021). Experimental investigation on the dominating fluid-fluid and rock-fluid interactions during low salinity water flooding in water-wet and oil-wet calcites. Journal of Petroleum Science and Engineering, 204, 108697, doi: 10.1016/j.petrol.2021.108697. ##
[64]. Farhadi, H., Ayatollahi, S., & Fatemi, M. (2021). The effect of brine salinity and oil components on dynamic IFT behavior of oil-brine during low salinity water flooding: Diffusion coefficient, EDL establishment time, and IFT reduction rate, Journal of Petroleum Science and Engineering, 196, 107862, doi: 10.1016/j.petrol.2020.107862. ##
[65]. Lashkarbolooki, M., Riazi, M., Hajibagheri, F., & Ayatollahi, S. (2016). Low salinity injection into asphaltenic-carbonate oil reservoir, mechanistical study. Journal of Molecular Liquids, 216, 377-386, doi: 10.1016/j.molliq.2016.01.051. ##