بررسی عملکرد هیدروژل طبیعی پایه کربوکسی متیل سلولز در ازدیاد برداشت شیمیایی نفت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران، ایران

2 پژوهشکده مهندسی شیمی و نفت، پژوهشگاه شیمی و مهندسی شیمی ایران، تهران، ایران

3 دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران، ایران/دانشکده فیزیک و مهندسی، دانشگاه سنت توماس، تگزاس، آمریکا

چکیده

رویکرد بهینه‌سازی ازدیاد برداشت نفت در دهه اخیر یکی از نیازهای اصلی این صنعت برشمرده شده است. هیدروژل‌ها در این حوزه با توجه به ویژگی‌های منحصربه‌فرد خود همچون ساختار سه بعدی، خیاط‌دوز و دوست‌دار محیط‌زیست کاربرد قابل توجهی دارند. با این حال، مطالعات مرتبط با کاربرد هیدروژل‌ها در ازدیاد برداشت نفت همچنان محدود است. در این مقاله، هیدروژل از پیش تشکیل شده پایدار و اقتصادی بر پایه کربوکسی‌متیل‌سلولز به‌منظور ازدیاد برداشت نفت طراحی و ساخته شده است. به‌منظور شناسایی ساختاری و بررسی عملکرد PPGs بر پایه کربوکسی متیل سلولز از آزمون‌های FTIR، آنالیز توزین حرارتی، تورم، رئولوژی، تعیین زاویه تماس و در نهایت سیلاب‌زنی در مقیاس میکرو استفاده شد. نتایج آزمون FTIR ساختار شیمیایی و پلیمریزاسیون موفق در تشکیل PPG را تایید کرد. براساس آزمون TGA نمونه سنتز شده تا دمای C° 120 دارای پایداری حرارتی قابل قبولی است. قابلیت تورم و جذب آب با حفظ ساختار هیدروژل بیش از 15 برابر وزن خشک اولیه در محیط آب‌نمک و دمای C° 90 تعیین شد. شایان ذکر است که نمونه ساخته شده قابلیت حفظ و بازیابی ساختار خود را تا کرنش 70% دارد. PPGs بر پایه کربوکسی متیل سلولز قابلیت کاهش 88/47 درجه زاویه تماس و تغییر ترشوندگی از نفت‌دوست به آب‌دوست سنگ مخزن را دارد. در نهایت افزایش 24% تولید نفت با سیلاب‌زنی در یک میکرومدل شیشه‌ای نسبت به تزریق مرحله دوم با مکانیزم‌های بهبود بازدهی جاروبی، کاهش نسبت تحرک و بهبود ترشوندگی سطح حاصل عملکرد هیدروژل حاصل شد. این در حالی است که تزریق پلیمر در شرایط مشابه تنها به افزایش 15% تولید نفت منجر شد. نتایج حاکی از پتانسیل بالای PPG برپایه کربوکسی متیل سلولز در بهبود تولید نفت در شرایط سخت مخزن بوده و اهمیت تحقیقات گسترده‌تر برای بررسی هیدروژل‌ها بر پایه پلیمرهای طبیعی و بهینه‌سازی آن‌ها را بیش‌از‌پیش نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Performance of Carboxymethyl Cellulose-based Hydrogel in Chemical Enhanced Oil Recovery

نویسندگان [English]

  • Hooman Harighi 1
  • Mahsa Baghban Salehi 2
  • Vahid Taghikhani 3
1 Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
2 Department of Petroleum Engineering, Chemistry and Chemical Engineering Research Center of Iran (CCERCI), Tehran, Iran
3 Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran\Department of Physics and Engineering, Chemical Engineering, University of St. Thomas, Houston, TX, USA
چکیده [English]







The petroleum industry has been focusing on optimizing enhanced oil recovery (EOR) techniques in recent years. Hydrogels have the potential to be used in various sectors of the oil industry due to their unique three-dimensional network structure and environmentally friendly characteristics. However, the application of hydrogels in EOR processes is still limited. This paper introduces a new method of utilizing stable and cost-effective preformed particle hydrogels (PPGs) based on carboxymethyl cellulose for enhanced oil recovery while keeping environmental considerations in mind. The research team conducted various tests such as FTIR analysis, thermal gravimetric analysis (TGA), swelling tests, rheological analysis, contact angle measurement, and micromodel flooding experiments to identify the structural characteristics and performance evaluation of carboxymethyl cellulose-based PPGs. The results of the FTIR analysis confirmed that the chemical structure and polymerization of PPGs were successful. Furthermore, the synthesized samples showed acceptable thermal stability up to 120°C, as indicated by the TGA analysis. The hydrogels demonstrated remarkable swelling and water absorption capacity while retaining their structural integrity. They significantly reduced the mobility ratio, increasing in weight by over 15 times in brine environments at 90°C. The carboxymethyl cellulose-based PPGs also changed the wettability of reservoir rocks from oil-wet to water-wet by reducing the contact angle by 47.88 degrees. Micromodel flooding experiments showed that these hydrogels resulted in a 24% increase in oil production compared to secondary injection, attributed to improved displacement efficiency, reduced mobility ratio, and enhanced surface wettability. On the other hand, polymer injection only resulted in a 15% increase in oil production under similar conditions. The research indicates that these materials have significant potential for enhancing oil recovery under challenging reservoir conditions with high temperature and salinity. Further extensive research on sustainable hydrogels and optimization of their compositions is necessary.



کلیدواژه‌ها [English]

  • Sustainable Hydrogel
  • PPG
  • Enhanced Oil Recovery
  • Sweep Efficiency
  • Micromodel Flooding
  • Rheology
[1]. Rezaei, A., Riazi, M., and Escrochi, M. (2018). Investment opportunities in Iranian EOR projects. In Saint Petersburg, 1,  1-5, European Association of Geoscientists & Engineers, doi: 10.3997/2214-4609.201800326.##
[2]. Tarighi, S., and Shavvalpour, S. (2021). Technological catch-up in oil E&P industry with Learning and Technological Capability development approach: EOR sector of Iran, Journal of Technology Development Management, 9(2): 47-89, doi: 10.22104/jtdm.2021.4566.2672. ##
[3]. Liu, Z. X., Liang, Y., Wang, Q., Guo, Y. J., Gao, M., Wang, Z. B., and Liu, W. L. (2020). Status and progress of worldwide EOR field applications, Journal of Petroleum Science and Engineering, 193, 107449, doi: 10.1016/j.petrol.2020.107449. ##
[4]. Thakuria, C., Al-Amri, M. S., Al-Saqri, K. A., Jaspers, H. F., Al-Hashmi, K. H., and Zuhaimi, K. (2013). Performance review of polymer flooding in a major brown oil field of Sultanate of Oman, In SPE Asia Pacific Enhanced Oil Recovery Conference, SPE-165262, doi: 10.2118/165262-MS. ##
[5]. Kyani, A., & Hashemizadeh, A. (2022). Successful case studies on the use of polymers to EOR by polymer flooding, Journal of Petroleum Research, 32(1401-1): 24-50, doi: 10.22078/pr.2022.4508.3033. ##
[6]. Al-Asadi, A., Somoza, A., Arce, A., Rodil, E., & Soto, A. (2023). Nanofluid based on 1-dodecylpyridinium chloride for enhanced oil recovery, Petroleum Science, 20(1): 600-610, doi: 10.1016/j.petsci.2022.08.018. ##
[7]. Jarrahian, K., Seiedi, O., Sheykhan, M., Sefti, M. V., and Ayatollahi, S. (2012). Wettability alteration of carbonate rocks by surfactants: a mechanistic study, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 410, 1-10, doi: 10.1016/j.colsurfa.2012.06.007. ##
[8]. Li, Z., Ayirala, S., Mariath, R., AlSofi, A., Xu, Z., & Yousef, A. (2020). Microscale effects of polymer on wettability alteration in carbonates, SPE Journal, 25(04): 1884-1894, doi: 10.2118/200251-PA. ##
[9]. Aqcheli, F., Salehi, M. B., Pahlevani, H., & Taghikhani, V. (2020). Rheological properties and the micromodel investigation of nanosilica gel-reinforced preformed particle gels developed for improved oil recovery, Journal of Petroleum Science and Engineering, 192, 107258, doi: 10.1016/j.petrol.2020.107258. ##
[10]. Lenji, M. A., Haghshenasfard, M., Sefti, M. V., & Salehi, M. B. (2018). Experimental study of swelling and rheological behavior of preformed particle gel used in water shutoff treatment, Journal of Petroleum Science and Engineering, 169, 739-747, doi: 10.1016/j.petrol.2018.06.029. ##
[11]. Salehi, M. B., Vasheghani-Farahani, E., Sefti, M. V., Moghadam, A. M., & Naderi, H. (2014). Rheological and transport properties of sulfonated polyacrylamide hydrogels for water shutoff in porous media, Polymers for advanced technologies, 25(4): 396-405, doi: 10.1002/pat.3254. ##
[12]. Rafipoor, M., Vafaie Sefti, M., HaghTalab, A., Razzaghi Kashani, M., & Salimi, F. (2013). Investigation of rheological properties and performance of polymeric gel systems (based on polyacrylamide) in high temperature reservoirs, Journal of Petroleum Research, 22(69): 3-16, doi: 10.22078/pr.2013.95. ##
[13]. Bai, B., Leng, J., & Wei, M. (2022). A comprehensive review of in-situ polymer gel simulation for conformance control. Petroleum Science, 19(1): 189-202, doi: 10.1016/j.petsci.2021.09.041. ##
[14]. Karchoubi, F., & Pahlevani, H. (2019). A review on nanocomposite hydrogels: rheology, morphology, and applications, Journal of Applied Research of Chemical-Polymer Engineering, 3(3): 3-38. ##
[15]. Ullah, F., Othman, M. B. H., Javed, F., Ahmad, Z., & Akil, H. M. (2015). Classification, processing and application of hydrogels: A review. Materials Science and Engineering: C, 57, 414-433, doi: 10.1016/j.msec.2015.07.053. ##
[16]. Tamsilian Y. and Ramezani S.A A. (2012). Comparison of prepared hydrogels based on chitosan by heating and irradiation methods and investigation of their effects on rheological properties of drilling mud, The journal of Petroleum Research, 21(68): 3–18, doi: 10.22078/pr.2013.86. ##
[17]. Gbadamosi, A. O., Junin, R., Manan, M. A., Agi, A., Oseh, J. O., & Usman, J. (2019). Effect of aluminium oxide nanoparticles on oilfield polyacrylamide: Rheology, interfacial tension, wettability and oil displacement studies, Journal of Molecular Liquids, 296, 111863, doi: 10.1016/j.molliq.2019.111863. ##
[18]. Long, Y., Wang, Z., Ding, H., Geng, J., & Bai, B. (2019). Investigation and characterization of a robust nanocomposite preformed particle gel for enhanced oil recovery. Energy & Fuels, 33(6), 5055-5066, doi: 10.1021/acs.energyfuels.9b00778. ##
[19]. Zhu, D., Bai, B., & Hou, J. (2017). Polymer gel systems for water management in high-temperature petroleum reservoirs: a chemical review. Energy & Fuels, 31(12): 13063-13087, doi: 10.1021/acs.energyfuels.7b02897. ##
[20]. Hughes, T. L., Jones, T. G. J., & Houwen, O. H. (1993). Chemical characterization of CMC and its relationship to drilling-mud rheology and fluid loss. SPE Drilling & Completion, 8(03): 157-164, doi: 10.2118/20000-PA. ##
[21]. Hughes, T. L., Jones, T. G. J., & Houwen, O. H. (1993). Chemical characterization of CMC and its relationship to drilling-mud rheology and fluid loss. SPE drilling & completion, 8(03), 157-164, doi: 10.1016/b978-0-323-91753-7.00006-5. ##
[22]. Resende, J. F., Paulino, I. M. R., Bergamasco, R., Vieira, M. F., and Vieira, A. M. S. (2023). Hydrogels produced from natural polymers: A review on its use and employment in water treatment. Brazilian Journal of Chemical Engineering, 40(1): 23-38, doi: 10.1007/s43153-022-00224-8. ##
[23]. Benchabane, A., & Bekkour, K. (2008). Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid and Polymer Science, 286(10): 1173-1180, doi: 10.1007/s00396-008-1882-2. ##
[24]. Arefian, M., Hojjati, M., Tajzad, I., Mokhtarzade, A., Mazhar, M., & Jamavari, A. (2020). A review of Polyvinyl alcohol/Carboxymethyl cellulose (PVA/CMC) composites for various applications, Journal of Composites and Compounds, 2(3), 69-76, doi: 10.29252/jcc.2.2.2. ##
[25]. da Luz, R. C., Fagundes, F. P., & Balaban, R. D. C. (2017). Water-based drilling fluids: the contribution of xanthan gum and carboxymethylcellulose on filtration control, Chemical Papers, 71, 2365-2373, doi: 10.1007/s11696-017-0231-7. ##
[26]. Balogun, Y., Oluyemi, G., Njuguna, J., & Mahon, R. (2021). Correction to: Swelling performance of sodium polyacrylate and poly (acrylamide‑co‑acrylic acid) potassium salt, SN Applied Sciences, 3(8), doi: 10.1007/s42452-021-04654-w. ##
[27]. Saghandali, F., Salehi, M. B., & Taghikhani, V. (2023). Hydrogel nanocomposite network elasticity parameters as a function of swelling ratio: From micro to macro flooding, Journal of Industrial and Engineering Chemistry, 125, 163-177, doi: 10.1016/j.jiec.2023.05.025. ##
[28]. Haniyeh, F., Abdollah, A., & Abolghasem, D. (2013). Controlled growth of well-Aligned carbon nanotubes, electrochemical modification and electrodeposition of multiple shapes of gold nanostructures, Materials Sciences and Applications, doi: 10.4236/msa.2013.411083. ##
[29]. Schramm, C. (2020). High temperature ATR-FTIR characterization of the interaction of polycarboxylic acids and organotrialkoxysilanes with cellulosic material. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 243, 118815, doi: 10.1016/j.saa.2020.118815. ##
[30]. Chai, M. N., & Isa, M. I. N. (2013). The oleic acid composition effect on the carboxymethyl cellulose based biopolymer electrolyte, doi: 10.4236/jcpt.2013.31001. ##
[31]. Dong, H., Snyder, J. F., Williams, K. S., & Andzelm, J. W. (2013). Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromolecules, 14(9): 3338-3345, doi: 10.1021/bm400993f. ##
[32]. Lenji, M. A., Haghshenasfard, M., Sefti, M. V., & Salehi, M. B. (2018). Experimental study of swelling and rheological behavior of preformed particle gel used in water shutoff treatment, Journal of Petroleum Science and Engineering, 169, 739-747, doi: 10.1016/j.petrol.2018.06.029. ##
[33]. Razavi Nezhad J., Jafari A. and Abdollahi M. (2017). Experimental investigation of nanoparticles effect on performance of polymer-surfactant flooding processes for enhancing recovery from the heavy oil reservoirs. ##
[34]. Semnani, R. H., Salehi, M. B., Mokhtarani, B., Sharifi, A., Mirzaei, M., & Taghikhani, V. (2022). Evaluation of the interfacial activity of imidazolium-based ionic liquids and their application in enhanced oil recovery process, Journal of Molecular Liquids, 362, 119735, doi: 10.1016/j.molliq.2022.119735. ##