مراجع
[1] Shaibal R., Tobiias B. and M. Al. Dahhan, Monolith as Multiphase Reactors: A Review, AIChE, 50, 2914-2938, 2004.
[2] Heck R. M., Gulati S. and Farrauto R. J., “The application of monoliths for gas phase catalytic reactions”, Chem. Eng. J., 82, pp.149-156, 2001.
[3] Kapteijn F., Heiszwolf J. J., Nijhuis T. A. and Moulijn J. A., Monoliths in multiphase catalytic processes aspects and prospects, CATTECH, 1, 24-41, 1999.
[4] Cybulski A. and Molijn J.A., Structured catalysts and reactors, Taylor and Francis, 2006.
[5] Boger T., Heibel A. K. and Sorensen C. M., Monolithic Catalysts for the Chemical Industry, Ind. Eng. Chem. Res., 43 , 4602-4611, 2004.
[6] Hayes R. E., Liu B., Moxom R. and Votsmeier M., “The effect of washcoat geometry on mass transfer in monolith reactors”, Chem. Eng. Sci., 59, pp. 3169-3181, 2004.
[7] Vergunst T., Kapteijn F. and Moulijn J. A., “Monolithic catalysts-non-uniform active phase distribution by impregnation”, Appl. Catal., A, 213, pp. 179-187, 2001.
[8] Tronconi E. and Groppi G., “High conductivity monolith catalyst for gas solid exothermic reactions”, Chem. Eng. Tech., 25, pp. 743-750, 2002.
[9] Nakhaei Pour A. Kamali Shahri S. M., Bozorgzadeh H. R., Zamani Y., Tavasoli A. and Ahmadi Marvast M., “Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron based catalysts in Fischer–Tropsch synthesis”, Appl. Catal., A, 348, pp. 201–208, 2008.
[10] Nakhaei Pour A. Kamali Shahri S. M., Zamani Y., and Zamaniyan A., “Promoter effect on the CO2-H2O formation during Fischer-Tropsch synthesis on iron-based catalysts,” J. Nat. Gas Chem., 19, pp. 193-197, 2010.
[11] Nijhuis T.A., Beers A.E.W., Vergunst T., Hoek I. and Molijn J.A., Preparation of monolithic catalysts, Cat. Rev., 43, pp. 345-380, 2001.
[12] Williams J. L., Monolith structures, materials, properties and uses, Catal. Today, 69, 3-9, 2001.
[13] Davis B. H. and Occelli M. L., Fischer-Tropsch Synthesis, Catalysts and Catalysis, Elsevier Science & Technology Books: 2007.
[14] Addiego W. P., and Boger T., “Iron oxide-based honeycomb catalysts for the dehydrogenation of ethyl benzene to styrene”, Catal. Today, 69, pp. 25-31, 2001.
[15] Addiego W. P. and Magee C. S., Alumina-bound high strength ceramic honeycombs, US Patent, 6677261, 2004.
[16] Lachman I. M., Bardham P. and Nordline L. A., Preparation of monolithic catalyst support structures having an integrated high surface area phase, US Patent, 4631268, 1986.
[17] Davis B. H., “Fischer–Tropsch Synthesis: Reaction mechanisms for iron catalysts”, Catal. Today,141, pp. 25–33, 2009.
[18] Bukur D. B., Lang X., Mukesh D., Zimmerman W. H., Rosynek M. P., and Li C., “Binder/Support Effects on the Activity and Selectivity of Iron Catalysts in the Fischer-Tropsch Synthesis”, Ind. Eng. Chem. Res. 29, pp. 1588- 1599, 1990.
[19] Yong Y., Xiang HW., Tian L., Wang H., Zhang CH., Tao ZC., Xu YY., Zhong B., and Li YW. “Structure and Fischer–Tropsch performance of iron–manganese catalyst incorporated with SiO2”, Applied Catalysis A: General 284, pp. 105–122, 2005.
[20] Post M. F. M., van’t Hoog A. C., Minderhoud J. K. and Sie S. T., “Diffusion limitations in Fischer-Tropsch Catalysts”, AICHE, 35, pp. 1107-1114, 1989.
[21] Wen-Jie S., Jiang-Lia Z. and Bi-Jiang Z., “Intraparticle diffusion effects in fischer tropsch synthesis II.effects of particle size, temperature and pore structure”, J. Nat. Gas Chem., 5, pp. 107-115, 1996.
[22] Zimmerman W. H., Rossin J. A. and Bukur D. B., “Effect of particle size on the activity of a fused Iron fischer tropsch catalyst”, Ind. Eng. Chem. Res., pp. 406-413, 1989.
[23] Steynberg A., and Dry M., Fischer-Tropsch technology, Elsevier Science & Technology Books: 2004.