مشخصه‌یابی عنصری رسوبات آسفالتین چاه‌های نفتی جنوب غربی ایران با بهره‌گیری از روش بیناب‌نگاری فروشکست القایی لیزری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فیزیک، دانشگاه یزد، یزد، ایران

2 دانشکده فیزیک، دانشگاه یزد، یزد، ایران/گروه پژوهشی فوتونیک، آزمایشگاه تحقیقاتی بیناب‌نگاری لیزری، دانشگاه یزد، یزد، ایران

چکیده

اهمیت و تعیین عناصر کمیاب در صنعت نفت برای پالایش و فرآوری نفت خام و همچنین اکتشاف نفت خام بسیار مهم است. هدف از این پژوهش شناسایی عنصری و تشخیص دقیق عناصر فلزی کمیاب موجود در رسوبات آسفالتین است. بدین منظور در این مقاله از روش‌های شناسایی عنصری ازجمله بیناب‌نگاری پراکندگی انرژی پرتو ایکس (EDX) و بیناب‌نگاری فروشکست القایی لیزری (LIBS) بهره برده شده است. در بیناب‌های ثبت‌شده با استفاده از بیناب‌نگاری EDX، عناصر کربن (C)، اکسیژن (O)، نیتروژن (N) و گوگرد (S) با مقادیر قابل‌توجه‌ای در نمونه‌های ‌آسفالتین مشاهده شد. همچنین مطالعه عنصری انجام‌شده با استفاده از روش LIBS، درمجموع منجر به شناسایی 38 خط نشری اتمی ناشی از عناصر گوناگون شد. تجزیه‌ و تحلیل خطوط بینابی مشاهده‌شده منجر به شناسایی عناصر آهن (Fe)، هیدروژن (H)، سدیم (Na)، مس (Cu)، کلسیم (Ca)، آلومینیوم (Al)، کادمیم (Cd)، مولیبدن (Mo)، وانادیم (V)، پتاسیم (K)، سرب (Pb)، منیزیم (Mg) و استرانسیوم (Sr) در رسوبات آسفالتین گردید. در این پژوهش به‌کارگیری دو روش آنالیز عنصری اشاره ‌شده، حاکی از آن است که رسوبات نفتی حاوی ترکیبات عنصری ارزشمند و راهبردی‌اند که می‌توانند در استحصال و فرآوری فراورده‌های نفتی مورد توجه قرار گیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Elemental Analysis of Asphaltene Sediments Extracted from Oil Wells at the Southwest of Iran by Laser-Induced Breakdown Spectroscopy

نویسندگان [English]

  • Roghaye Izan 1
  • Mohammad Ali Haddad 2
  • Mahmoud Borhani Zarandi 1
1 Department of Physics, Faculty of Basic Science, Yazd University, Yazd, Iran
2 Department of Physics, Faculty of Basic Science, Yazd University, Yazd, Iran\Laser Spectroscopy Research Laboratory (LSRL), Yazd University,Yazd, Iran
چکیده [English]

Identifying and analyzing small components within the oil industry plays a vital role in the extraction, processing, and exploration of crude oil. This study aimed to accurately determine the presence of elements and rare metals in asphaltenes. To achieve this objective, the study employs Energy-Dispersive X-ray spectroscopy (EDX) and Laser-Induced Breakdown Spectroscopy (LIBS) techniques to precisely analyze the elemental composition of asphaltene samples. Furthermore, EDX analysis revealed significant quantities of Carbon (C), Oxygen (O), Nitrogen (N), and Sulfur (S) in asphaltenes. Moreover, the LIBS analysis identified 38 atomic and molecular transmission lines from various elements. Molecular structures such as CN and C2, as well as atoms including Iron (Fe), Hydrogen (H), Sodium (Na), Copper (Cu), Calcium (Ca), Aluminum (Al), Cadmium (Cd), Molybdenum (Mo), Vanadium (V), Potassium (K), Lead (Pb), Magnesium (Mg), and Strontium (Sr), were identified through the examination of observed emission lines.  This research highlights the use of two elemental analysis techniques, showing that oil sediments contain valuable and strategic elemental compounds that can be considered for extracting and processing petroleum products.

کلیدواژه‌ها [English]

  • Asphaltene Sediments
  • Elemental Analysis
  • Laser-induced Breakdown Spectroscopy (LIBS)
  • Energy-Dispersive X-ray Spectroscopy (EDX)
  • Atomic Transition
[1]. Priyanto, S., Mansoori, G. A., & Suwono, A. (2001). Measurement of property relationships of nano-structure micelles and coacervates of asphaltene in a pure solvent. Chemical Engineering Science, 56(24), 6933-6939, doi.org/10.1016/S0009-2509 (01)00337-2. ##
[2]. Pomerantz, A. E., Hammond, M. R., Morrow, A. L., Mullins, O. C., & Zare, R. N. (2008). Two-step laser mass spectrometry of asphaltenes. Journal of the American Chemical Society, 130(23), 7216-7217, doi.org/10.1021/ja801927v.##
[3]. Tavassoli, T., Mousavi, S. M., Shojaosadati, S. A., & Salehizadeh, H. (2012). Asphaltene biodegradation using microorganisms isolated from oil samples. Fuel, 93, 142-148, doi.org/10.1016/j.fuel.2011.10.021.##
[4]. Groenzin, H., & Mullins, O. C. (2000). Molecular size and structure of asphaltenes from various sources. Energy & Fuels, 14(3), 677-684,doi.org/10.1021/ef990225z.##
[5]. Sadeghtabaghi, Z., Rabbani, A. R., and Hemmati-sarapardeh, A. (2021). Introducing a novel approach for oil-oil correlation based on asphaltene structure: X-ray diffraction. Acta Geologica Sinica-English Edition, 95(6), 2100-2119, doi.org/10.1111/1755-6724.14709. ##
[6]. Qiu, Y., Liu, H., Ma, N., Chen, J., Ding, H., Hu, Z., & Zhong, D. (2023). Variable-temperature raman spectroscopy study of the phase transition mechanism in asphalt binders, Energy & Fuels, 37(14), 10296-10309, doi.org/10.1021/acs.energyfuels.3c01745.##
[7]. Morozov, E. V., Trukhan, S. N., Kozhevnikov, I. V., Peterson, I. V., & Martyanov, O. N. (2023). Dynamics of asphaltene aggregates under high-pressure CO2 revealed by pulsed-field gradient NMR, Energy & Fuels, 37(22), 17215-17226, doi.org/10.1021/acs.energyfuels.3c02862.##
[8]. Esmaeilian, N., Rabiei, N., Mahmoudi, M., & Dabir, B. (2023). Asphaltene Structure Determination: FTIR, NMR, EA, ICP-OES, MS, XRD and Computational Chemistry Considerations. Journal of Molecular Liquids, 122279, doi.org/10.1016/j.molliq.2023.122279.##
[9]. Hemmati-Sarapardeh, A., Dabir, B., Ahmadi, M., Mohammadi, A. H., & Husein, M. M. (2018). Toward mechanistic understanding of asphaltene aggregation behavior in toluene: The roles of asphaltene structure, aging time, temperature, and ultrasonic radiation. Journal of Molecular Liquids, 264, 410-424, doi.org/10.1016/j.molliq.2018.04.061.##
[10]. Smyshlyaeva, K. I., Rudko, V. A., Kuzmin, K. A., & Povarov, V. G. (2022). Asphaltene genesis influence on the low-sulfur residual marine fuel sedimentation stability. Fuel, 328, 125291, doi.org/10.1016/j.fuel.2022.125291.##
[11]. Dittert, I. M., Silva, J. S., Araujo, R. G., Curtius, A. J., Welz, B., & Becker-Ross, H. (2010). Simultaneous determination of cobalt and vanadium in undiluted crude oil using high-resolution continuum source graphite furnace atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 25(4), 590-595, doi.org/10.1039/b915194j.##
[12]. Akinlua, A., Torto, N., & Ajayi, T. R. (2008). Determination of rare earth elements in Niger Delta crude oils by inductively coupled plasma-mass spectrometry. Fuel, 87(8-9), 1469-1477, doi.org/10.1016/j.fuel.2007.09.004.##
[13]. Gondal, M. A., Hussain, T., Yamani, Z. H., & Baig, M. A. (2006). Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy. Talanta, 69(5), 1072-1078. doi.org/10.1016/j.talanta.2005.11.023.##
[14]. صدیقی، ن.، حداد، م. ع. (1400). مطالعه عنصری هواویزهای ریزشی شهر یزد با بهره‌گیری از روش بیناب نگاری فروشکست القایی لیزری، فیزیک زمین و فضا، (47): 127-144،doi: 10.22059/jesphys.2021.308120.1007242##
[15]. Choi, H. B., Moon, S. H., Kim, H., Guthikonda, N., Ham, K. S., Han, S.H., Nam, S. H. and Lee, Y. H. (2023). A simple laser-induced breakdown spectroscopy method for quantification and classification of edible sea salts assisted by surface hydrophilicityenhanced silicon wafer substrates, Sensors, 23(22): 9280, doi.org/10.3390/s23229280.##
[16]. Li, J., Zhu, Z., Zhou, R., Zhao, N., Yi, R., Yang, X., & Lu, Y. (2017). Determination of carbon content in steels using laser-induced breakdown spectroscopy assisted with laser-induced radical fluorescence, Analytical Chemistry, 89(15): 8134-8139, doi.org/10.1021/acs.analchem.7b01932.##
[17]. Leosson, K., Padamata, S. K., Meirbekova, R., Saevarsdottir, G., & Gudmundsson, S. H. (2022). Analysis of dissolved titanium concentration and phase transformation in molten AlTi alloy using laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 190, 106387, doi.org/10.1016/j.sab.2022.106387.##
[18]. Keerthi, K., George, S. D., Kulkarni, S. D., Chidangil, S., & Unnikrishnan, V. K. (2022). Elemental analysis of liquid samples by laser induced breakdown spectroscopy (LIBS): Challenges and potential experimental strategies. Optics & Laser Technology, 147, 107622, doi.org/10.1016/j.optlastec.2021.107622.##
[19]. Machado, R. C., Babos, D. V., Andrade, D. F., & Pereira-Filho, E. R. (2021). A novel strategy for direct elemental determination using laser-induced breakdown spectroscopy: fluence calibration. Journal of Analytical Atomic Spectrometry, 36(10), 2132-2143, doi.org/10.1039/D1JA00229E.##
[20]. Dem tröde , Wolfgang.(2008). Laser spectroscopy (Vol. 2, pp. 94-104). Berlin: Springer. ##
[21]. Cremers, D. A., & Radziemski, L. J. (2013). Handbook of laser-induced breakdown spectroscopy. John Wiley & Sons.##
[22]. Liu, X., Zhang, Q., Wu, Z., Shi, X., Zhao, N., & Qiao,Y.(2014). Rapid elemental analysis and provenance study of Blumea balsamifera DC using laser-inducedbreakdown spectroscopy. Sensors, 15(1), 642-655, doi.org/10.3390/s150100642.##
[23]. Miziolek, A. W., Palleschi, V., & Schechter, I. (Eds.). (2006). Laser induced breakdown spectroscopy. Cambridge university press, doi.org/10.1017/CBO9780511541261.##
[24]. El-Hussein, A., Marzouk, A., & Harith, M. A. (2015). Discriminating crude oil grades using laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 113, 93-99, doi.org/10.1016/j.sab.2015.09.002.##
[25]. Oropeza, D., González, J., Chirinos, J., Zorba, V., Rogel, E., Ovalles, C., & López-Linares, F. (2019). Elemental analysis of asphaltenes using simultaneous laser-induced breakdown spectroscopy (LIBS)–laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES). Applied Spectroscopy, 73(5), 540-549, doi.org/10.1364/AS.73.000540.##
[26]. Gondal, M. A., Siddiqui, M. N., & Nasr, M. M. (2010). Detection of trace metals in asphaltenes using an advanced laser-induced breakdown spectroscopy (LIBS) technique. Energy& Fuels, 24(2), 1099-1105, doi.org/10.1021/ef900973s.
[27]. Noll, R., (2012). Laser-induced breakdown spectroscopy, (pp. 7-15). Springer Berlin Heidelberg.##
[28]. Kongbonga, Y. G. M., Ghalila, H., Onana, M. B., & Lakhdar, Z. B. (2014). Classification of vegetable oils based on their concentration of saturated fatty acids using laser induced breakdown spectroscopy (LIBS). Food Chemistry, 147, 327-331, doi.org/10.1016/j.foodchem.2013.09.15. ##