[1]. Luzardo, J., Oliveira, E.P., Derks, P.W.J., Nascimento, R.V., Gramatges, A.P., Valle, R., Pantano, I.G., Sbaglia, F. and Inderberg, K. (2015). Alternative lost circulation material for depleted reservoirs. In Offshore Technology Conference Brasil, D031S029R001). OTC.##
[2]. Al Menhali, S., Abdul Halim, A. O., and Al Menhali, S. (2014). Curing Losses While Drilling & Cementing. Society of Petroleum Engineers. doi:10.2118/171910-MS.##
[3]. Nasiri, A., Ameri Shahrabi, M., Keshavarz Moraveji, M., (2018). Experimental Investigation of the Performance of Different Lost Circulation Materials and Introducing a New Type of Eco-Friendly Lost Circulation Additive. Petroleum Research. DOI: 10.22078/pr.2018.2874.2334.##
[4]. Alsaba, M., Nygaard, R. and Hareland, G. (2014). Review of lost circulation materials and treatments with an updated classification, AADE National Technical Conference and Exhibition, Houston, TX, Apr, 15-16.##
[5]. Ashoori, S., Bahari Moghadam, M., Nazemi, R., Nooripoor, V., and Ahmadabadi, M. (2022). Dynamically evaluating the performance of naturally occurring additives to control lost circulation: on the effect of lost circulation material type, Particle-Size Distribution, and Fracture Width. SPE Journal, 1-23, doi.org/10.2118/209620-PA.##
[6]. Mansour, A., Ezeakacha, C., Taleghani, A. D., Li, G., and Salehi, S. (2017, October). Smart lost circulation materials for productive zones. In SPE Annual Technical Conference and Exhibition?. D031S033R001, ISBN: 978-1-61399-542-6. ##
[7]. Mansour, A. K., Taleghani, A. D., and Li, G. (2017). Smart expandable LCMs; a theoretical and experimental study. In AADE National Technical Conference and Exhibition, Houston, Texas, USA (pp. 11-12). ##
[8]. Samuel, M., Marcinew, R., Al-Harbi, M., Samuel, E., Xiao, Z., Ezzat, A. M., ... & Nasr-El-Din, H. A. (2003). A new solids-free non-damaging high temperature lost-circulation pill: development and first field applications. In Middle East Oil Show. OnePetro. ##
[9]. Jia, H., Chen, H., & Guo, S. (2017). Fluid loss control mechanism of using polymer gel pill based on multi-crosslinking during overbalanced well workover and completion. Fuel, 210, 207-216.##
[10]. Bai, Y., Liu, C., Sun, J., Shang, X., Lv, K., Zhu, Y., & Wang, F. (2022). High temperature resistant polymer gel as lost circulation material for fractured formation during drilling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 637, 128244.##
[11]. Hamza, A., Shamlooh, M., Hussein, I. A., Nasser, M., & Salehi, S. (2019). Polymeric formulations used for loss circulation materials and wellbore strengthening applications in oil and gas wells: A review. Journal of Petroleum Science and Engineering, 180, 197-214.##
[12]. Hashmat, M. D., Sultan, Abdullah S., Rahman, Saifur, and S. M. Hussain. (2016). Crosslinked polymeric gels as loss circulation materials: an experimental study, Paper presented at the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition.##
[13] Bai, Y., Zhang, Q., Sun, J., Shang, X., Lv, K., & Wang, F. (2021). Disproportionate filtration behaviors of polymer/chromium gel used for fracture plugging. Journal of Molecular Liquids, 343, 117567.##
[14]. Ay, A., Gucuyener, I. H., & Kök, M. V. (2014). An experimental study of silicate–polymer gel systems to seal shallow water flow and lost circulation zones in top hole drilling. Journal of Petroleum Science and Engineering, 122, 690-699
[15]. Contreras, O., Hareland, G., Husein, M., Nygaard, R., & Alsaba, M. (2014). Application of in-house prepared nanoparticles as filtration control additive to reduce formation damage. In SPE International Symposium and Exhibition on Formation Damage Control. OnePetro. ##
[16]. Li, G., Zhang, J., Zhao, H., & Hou, Y. (2012). Nanotechnology to improve sealing ability of drilling fluids for shale with micro-cracks during drilling. In SPE international oilfield nanotechnology conference and exhibition (pp. SPE-156997). SPE.##
[17]. Lecolier, E., Herzhaft, B., Rousseau, L., Neau, L., Quillien, B., & Kieffer, J. (2005, May). Development of a nanocomposite gel for lost circulation treatment, In SPE European Formation Damage Conference and Exhibition, SPE-94686, doi.org/10.2118/94686-MS. ##
[18]. Wang, K., Wang, Y., Ren, J., & Dai, C. (2017). Highly efficient nano boron crosslinker for low-polymer loading fracturing fluid system. In SPE Asia Pacific Oil and Gas Conference and Exhibition, D012S036R048), doi.org/10.2118/186943-MS.##
[19]. Gamage, P., Deville, J. P., & Sherman, J. (2014). Solids-free fluid-loss pill for high-temperature reservoirs. SPE Drilling and Completion, 29(01), 125-130.##
[20]. Borisov, A. S., Husein, M., & Hareland, G. (2015). A field application of nanoparticle-based invert emulsion drilling fluids, Journal of Nanoparticle Research, 17, 1-13.##
[21]. Jia, H., Kang, Z., Zhu, J., Ren, L., Cai, M., Wang, T., and Li, Z. (2021). High density bromide-based nanocomposite gel for temporary plugging in fractured reservoirs with multi-pressure systems, Journal of Petroleum Science and Engineering, 205, 108778, doi.org/10.1016/j.petrol.2021.108778. ##
[22]. Mora, G. S., & Moreno, R. B. Z. L. (2021). Rheology and statistical optimization of a shear-sensitive fluid as a treatment for circulation loss control, Journal of Petroleum Science and Engineering, 205, 108830, doi.org/10.1016/j.petrol.2021.108830.##
[23]. Gao, S., Guo, J., & Nishinari, K. (2008). Thermoreversible konjac glucomannan gel crosslinked by borax, Carbohydrate Polymers, 72(2): 315-325, doi.org/10.1016/j.carbpol.2007.08.015.##
[24]. Fan, H., Gong, Z., Wei, Z., Chen, H., Fan, H., Geng, J. Dai, C. (2017). Understanding the temperature–resistance performance of a borate cross-linked hydroxypropyl guar gum fracturing fluid based on a facile evaluation method. RSC advances, 7(84), 53290-53300.1, p. 012189). IOP Publishing.##
[27]. Liang, F., Al-Muntasheri, G., Ow, H., & Cox, J. (2015). Reduced polymer loading, high temperature fracturing fluids using nano-crosslinkers. In Abu Dhabi International Petroleum Exhibition and Conference. OnePetro.ISBN: 978-1-61399-424-5, https://doi.org/10.2118/177469-MS.##
[28]. Esmaeilirad, N., White, S., Terry, C., Prior, A., & Carlson, K. (2016). Influence of inorganic ions in recycled produced water on gel-based hydraulic fracturing fluid viscosity. Journal of Petroleum Science and Engineering, 139, 104-111.
[29]. Li, L., Al-Muntasheri, G. A., & Liang, F. (2016). A review of crosslinked fracturing fluids prepared with produced water. Petroleum, 2(4), 313-323. ##
[30]. Ferreira, S.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandão, G.C., da Silva, E.P., Portugal, L.A., Dos Reis, P.S., Souza, A.S. and Dos Santos, W.N.L (2007). Box-Behnken design: an alternative for the optimization of analytical methods. Analytica chimica acta, 597(2): 179-186, doi.org/10.1016/j.aca.2007.07.011.
[31]. Khuri, A. I., and Mukhopadhyay, S. (2010). Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics, 2(2), 128-149.##
[32]. Al-Muntasheri, G.A.; Li, L.; Liang, F.; Gomaa, A.M. (2018). Concepts in cleanup of fracturing fluids used in conventional reservoirs: A Literature Review, SPE Prod. Oper. 2018, 33, 196–213.##
[33]. Almubarak, T., Ng, J. H. C., AlKhaldi, M., Panda, S., and Nasr-El-Din, H. A. (2020). Insights on potential formation damage mechanisms associated with the use of gel breakers in hydraulic fracturing. Polymers, 12(11): 2722, doi.org/10.3390/polym12112722.##
[34]. Nazemi, R., Ashoori, S., and Moghadasi, J. (2023). Experimental Investigation of Hybrid Gel Performance in order to Control Fluid Loss in Fractured Formations. Journal of Petroleum Research, 32(1401-6): 22-36. doi: 10.22078/pr.2022.4870.3174.##