[1].Pekala, R. W., Alviso, C. T., Kong, F. M., & Hulsey, S. S. (1992). Aerogels derived from multifunctional organic monomers, Journal of Non-Crystalline Solids, 145, 90-98, doi.org/10.1016/S0022-3093(05)80436-3.##
[2]. Guo, F., Jiang, Y., Xu, Z., Xiao, Y., Fang, B., Liu, Y., & Gao, C. (2018). Highly stretchable carbon aerogels, Nature Communications, 9(1), 881. ##
[3]. Gan, G., Li, X., Fan, S., Wang, L., Qin, M., Yin, Z., & Chen, G. (2019). Carbon aerogels for environmental clean‐up, European Journal of Inorganic Chemistry, (27), 3126-3141, doi.org/10.1002/ejic.201801512. ##
[4]. Aegerter, M. A., Leventis, N., & Koebel, M. M. (2011). Advances in sol-gel derived materials and technologies, Aerogels Handbook, Springer, New York, NY, USA. ##
[5]. Moreno-Castilla, C., & Maldonado-Hódar, F. J. (2005). Carbon aerogels for catalysis applications: An overview, Carbon, 43(3), 455-465, doi.org/10.1016/j.carbon.2004.10.022. ##
[6]. Abolhasani, S., Ahmadpour, A., Bastami, T. R., & Yaqubzadeh, A. (2019). Facile synthesis of mesoporous carbon aerogel for the removal of ibuprofen from aqueous solution by central composite experimental design (CCD), Journal of Molecular Liquids, 281, 261-268, doi.org/10.1016/j.molliq.2019.02.084. ##
[7]. Al‐Muhtaseb, S. A., & Ritter, J. A. (2003). Preparation and properties of resorcinol–formaldehyde organic and carbon gels, Advanced Materials, 15(2), 101-114, doi.org/10.1002/adma.200390020. ##
[8]. Yamamoto, T., Nishimura, T., Suzuki, T., & Tamon, H. (2001). Control of mesoporosity of carbon gels prepared by sol–gel polycondensation and freeze drying, Journal of Non-Crystalline Solids, 288(1-3), 46-55, doi. org/10.1016/S0022-3093(01)00619-6. ##
[9]. Lee, J. H., & Park, S. J. (2020). Recent advances in preparations and applications of carbon aerogels: A review, Carbon, 163, 1-18, . ##
[10]. Wang, M. X., Zhang, J., Fan, H. L., Liu, B. X., Yi, X. B., & Wang, J. Q. (2019). ZIF-67 derived Co3O4/carbon aerogel composite for supercapacitor electrodes, New Journal of Chemistry, 43(15), 5666-5669, doi.org/10.1039/C8NJ05958F. ##
[11]. Lu, X., Wang, G., Yang, Y., Kong, X., & Chen, J. (2020). A boron-doped carbon aerogel-supported Cu catalyst for the selective hydrogenation of dimethyl oxalate, New Journal of Chemistry, 44(8), 3232-3240, doi.org/10.1039/C9NJ05956C. ##
[12]. Ma, L., Li, X., Gao, W., Zhang, X., Xu, P., Shu, Y., & Ding, Y. (2020). The immobilizing polysulfide mechanism of cadmium-doping carbon aerogels via a microtemplate for high performance Li–S batteries, New Journal of Chemistry, 44(3), 1001-1008, doi.org/10.1039/C9NJ05405G. ##
[13]. Qu, J., Chen, D., Li, N., Xu, Q., Li, H., He, J., & Lu, J. (2018). Engineering 3D Ru/graphene aerogel using metal–organic frameworks: capture and highly efficient catalytic CO oxidation at room temperature, Small, 14(16), 1800343, doi.org/10.1002/smll.201800343. ##
[14]. Smirnova, A., Dong, X., Hara, H., Vasiliev, A., & Sammes, N. (2005). Novel carbon aerogel-supported catalysts for PEM fuel cell application, International Journal of Hydrogen Energy, 30(2), 149-158, doi.org/10.1016/j.ijhydene.2004.04.014. ##
[15]. Hardjono, Y., Sun, H., Tian, H., Buckley, C. E., & Wang, S. (2011). Synthesis of Co oxide doped carbon aerogel catalyst and catalytic performance in heterogeneous oxidation of phenol in water, Chemical Engineering Journal, 174(1), 376-382, doi.org/10.1016/j.cej.2011.09.009. ##
[16]. Singh, S., Bhatnagar, A., Dixit, V., Shukla, V., Shaz, M. A., Sinha, A. S. K., & Sekkar, V. (2016). Synthesis, characterization and hydrogen storage characteristics of ambient pressure dried carbon aerogel, International Journal of Hydrogen Energy, 41(5), 3561-3570, doi.org/10.1016/j.ijhydene.2015.12.174. ##
[17]. Maldonado-Hódar, F. J. (2011). Metal-doped carbon aerogels as catalysts for the aromatization of n-hexane, Applied Catalysis A: General, 408(1-2), 156-162, doi.org/10.1016/j.apcata.2011.09.021. ##
[18]. Jiang, F., Wang, S., Zheng, J., Liu, B., Xu, Y., & Liu, X. (2021). Fischer-Tropsch synthesis to lower α-olefins over cobalt-based catalysts: Dependence of the promotional effect of promoter on supports. Catalysis Today, 369, 158-166, doi.org/10.1016/j.cattod.2020.03.051. ##
[19]. Moreno-Castilla, C., Maldonado-Hódar, F. J., & Pérez-Cadenas, A. F. (2003). Physicochemical surface properties of Fe, Co, Ni, and Cu-doped monolithic organic aerogels, Langmuir, 19(14), 5650-5655, doi.org/10.1021/la034536k. ##
[20]. Fu, R., Dresselhaus, M. S., Dresselhaus, G., Zheng, B., Liu, J., Satcher Jr, J., & Baumann, T. F. (2003). The growth of carbon nanostructures on cobalt-doped carbon aerogels, Journal of Non-crystalline Solids, 318(3), 223-232, doi.org/10.1016/S0022-3093(02)01903-8. ##
[21]. Fu, R., Dresselhaus, M. S., Dresselhaus, G., Zheng, B., Liu, J., Satcher Jr, J., & Baumann, T. F. (2003). The growth of carbon nanostructures on cobalt-doped carbon aerogels, Journal of Non-crystalline Solids, 318(3), 223-232, doi.org/10.1016/S0022-3093(02)01903-8. ##
[22]. Chen, P. W., Li, K., Yu, Y. X., & Zhang, W. D. (2017). Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution. Applied Surface Science, 392, 608-615, doi.org/10.1016/j.apsusc.2016.09.086. ##
[23]. Mao, Z., Chen, J., Yang, Y., Wang, D., Bie, L., & Fahlman, B. D. (2017). Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution, ACS Applied Materials & interfaces, 9(14), 12427-12435, doi.org/10.1021/acsami.7b00370. ##
[24]. کریمی، ع.، رشیدی، ع. و ناصرنژاد، ب. (2014) بهبود پایداری، فعالیت و گزینشپذیری از طریق ایجاد گروههای عاملی در نانوکاتالیست کبالت بر پایه نانو لوله کربنی در فرآیند فیشر-تروپش، پژوهش نفت، 23(76)، 15-4. ##
[25]. Torshizi, H. O., Pour, A. N., Mohammadi, A., & Zamani, Y. (2020). Fischer–Tropsch synthesis using a cobalt catalyst supported on graphitic carbon nitride. New Journal of Chemistry, 44(15), 6053-6062, doi.org/10.1039/D0NJ01041C. ##