[1]. براری م.، لشکربلوکی م. و عابدینی ر. (1402) اثر طول زنجیر بخش کاتیونی مایعیونی بر پایه امیدازولیوم بر ضریب پخش شوندگی نفت خام برروی سنگ دولومیتی در حضور یونهای سولفات و کلراید. پژوهش نفت، 33، 145-133.##
[2]. Wang, R., Li, Y., & Li, Y. (2014). Interaction between cationic and anionic surfactants: detergency and foaming properties of mixed systems, Journal of Surfactants and Detergents, 17, 881-888. ##
[3]. Liu, Z. Y., Li, Z. Q., Song, X. W., Zhang, J. C., Zhang, L., Zhang, L., & Zhao, S. (2014). Dynamic interfacial tensions of binary nonionic–anionic and nonionic surfactant mixtures at water–alkane interfaces, Fuel, 135, 91-98, doi.org/10.1016/j.fuel.2014.06.031. ##
[4]. Bian, S., Liu, P., Mao, Z., Huang, W., Zhu, Y., Zhang, L., & Zhang, L. (2024). Studying the factors determining the ultralow interfacial tensions of betaine solutions against crude oil, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 133453, doi.org/10.1016/j.colsurfa.2024.133453. ##
[5]. Kumari, R., Kakati, A., Nagarajan, R., & Sangwai, J. S. (2018). Synergistic effect of mixed anionic and cationic surfactant systems on the interfacial tension of crude oil-water and enhanced oil recovery, Journal of Dispersion Science and Technology, doi.org/10.1080/01932691.2018.1489280. ##
[6]. Welton, T., Ionic liquids: a brief history. Biophysical Reviews, 2018. 10(3): p. 691-706. ##
[7] . Lashkarbolooki, M., & Ayatollahi, S. (2018). Investigation of ionic liquids based on pyridinium and imidazolium as interfacial tension reducer of crude Oil− Water and their synergism with MgCl2, Journal of Petroleum Science and Engineering, 171, 414-421, doi.org/10.1016/j.petrol.2018.07.062. ##
[8]. Hezave, A. Z., Dorostkar, S., Ayatollahi, S., Nabipour, M., & Hemmateenejad, B. (2013). Effect of different families (imidazolium and pyridinium) of ionic liquids-based surfactants on interfacial tension of water/crude oil system, Fluid Phase Equilibria, 360, 139-145, doi.org/10.1016/j.fluid.2013.09.025. ##
[9]. Kumar, S., Panigrahi, P., Saw, R. K., & Mandal, A. (2016). Interfacial interaction of cationic surfactants and its effect on wettability alteration of oil-wet carbonate rock, Energy & Fuels, 30(4), 2846-2857, doi.org/10.1021/acs.energyfuels.6b00152. ## [10]. Guo, H., Dou, M., Hanqing, W., Wang, F., Yuanyuan, G., Yu, Z., & Li, Y. (2017). Proper use of capillary number in chemical flooding, Journal of Chemistry, doi.org/10.1155/2017/4307368. ##
[11]. احمدی ص.، وفایی سفتی م.، بهرامیان ع.، رستگار س ا. و جراحیان خ. (1394) بهینهسازی و مدلسازی زاویه تماس با استفاده از روش سطح پاسخ در فرآیند تغییر ترشوندگی سنگ کربناته توسط آب هوشمند، پژوهش نفت، 25، 83: 170-159، doi: 10.22078/ pr.2015.541. ##
[12]. منتظری، م.، شهرآبادی، ع.، نورعلیشاهی، ع.، موسویان، م. ع. و حلاج ثانی، ا. (1397) بررسی پدیده تغییر ترشوندگی در فرآیند تزریق آب هوشمند به مخازن کربناته با استفاده از آزمایش پتانسیل زتا و زاویه تماس، پژوهش نفت، 28، 4-97: 39-29، doi: 10.22078/pr.2018.2813.2304. . ##
[13]. محمدی، م. و ریاحی، س. (1398) بررسی عملکرد و سازگاری نمونه آبهای هوشمند حاوی بازدارندههای رسوب در مخازن کربناته. پژوهش نفت، 29، 98-6: 23-4، doi: 10.22078/pr.2019.3585.2636.. ##
[14]. Siyar, M., & Lashkarbolooki, M. (2022). Evaluation of the interfacial tension of binary surfactant mixtures and crude oil using the response surface method, Journal of Molecular Liquids, 366, 120253, doi.org/10.1016/j.molliq.2022.120253. ##
[15] Barari, M., Lashkarbolooki, M., & Abedini, R. (2021). Interfacial properties of crude oil/imidazolium based ionic liquids in the presence of NaCl and Na2SO4 during EOR processm, Journal of Molecular Liquids, 327, 114845, doi.org/10.1016/j.molliq.2020.114845. ##
[16]. Tyagi, P., & Tyagi, R. (2009). Synthesis, structural properties and applications of gemini surfactants: a review, Tenside Surfactants Detergents, 46(6), 373-382, doi.org/10.3139/113.110045. ##
[17]. Stauff J (1956) Solvent Properties of Amphiphilic Compounds, von PA Winsor. Butterworths Scientific Publ. Ltd., London. 1954. 1. Aufl. IX, 270 S., gebd. 40 s. Angewandte Chemie. 68(15): 504. ##
[18] Massarweh O. & Abushaikha A. S. (2020) The use of surfactants in enhanced oil recovery: A review of recent advances. Energy Reports. 6: 3150. ##
[19]. Tan, Y., & Guo, M. (2013). Using surface free energy method to study the cohesion and adhesion of asphalt mastic, Construction and Building Materials, 47, 254-260, doi.org/10.1016/j.conbuildmat.2013.05.067. ##
[20]. Lamperti, R., Grenfell, J., Sangiorgi, C., Lantieri, C., & Airey, G. D. (2015). Influence of waxes on adhesion properties of bituminous binders, Construction and Building Materials, 76, 404-412, doi.org/10.1016/j.conbuildmat.2014.11.058. ##
[21]. Kakar, M. R., Hamzah, M. O., Akhtar, M. N., & Woodward, D. (2016). Surface free energy and moisture susceptibility evaluation of asphalt binders modified with surfactant-based chemical additive, Journal of Cleaner Production, 112, 2342-2353, doi.org/10.1016/j.jclepro.2015.10.101. ##
[22]. Lashkarbolooki, M., & Ayatollahi, S. (2018). Investigating injection of low salinity brine in carbonate rock with the assist of works of cohesion and adhesion and spreading coefficient calculations, Journal of Petroleum Science and Engineering, 161, 381-389, doi.org/10.1016/j.petrol.2017.12.010. ##
[23]. Moustafa HM (2017) Oil Recovery by Surfactant Flooding; Sensitivity Analysis to Technical Parameters and Economic Analysis, Master thesis, United Arab Emirates University. ##
[24]. Hamidian, R., Lashkarbolooki, M., & Amani, H. (2019). Ion type adjustment with emphasize on the presence of NaCl existence; measuring interfacial tension, wettability and spreading of crude oil in the carbonate reservoir, Journal of Petroleum Science and Engineering, 182, 106266, doi.org/10.1016/j.petrol.2019.106266. ##
[25]. Negm, N. A., & Sabagh, A. M. E. (2011). Interaction between cationic and conventional nonionic surfactants in the mixed micelle and monolayer formed in aqueous medium. Química Nova, 34, 1007-1013و doi.org/10.1590/S0100-40422011000600018. ##
[26]. Housaindokht, M. R., & Pour, A. N. (2012). Study the effect of HLB of surfactant on particle size distribution of hematite nanoparticles prepared via the reverse microemulsion, Solid State Sciences, 14(5), 622-625, doi.org/10.1016/j.solidstatesciences.2012.01.016. ##