اثر ترکیب سورفکتانت‌های شیمیایی بر ضریب پخش‌شوندگی و عدد موئینگی در مخزن نفتی دولومیتی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی شیمی، آزمایشگاه ازدیادبرداشت نفت و فرآوری گاز، دانشگاه صنعتی نوشیروانی بابل

چکیده

مزایای عمده سیلاب‌زنی سورفکتانت آن را به یک روش بسیار بالقوه برای افزایش بازیابی نفت تبدیل کرده است.  این مطالعه با هدف ارزیابی مخلوط دوتایی انواع سورفکتانت‌ها از جمله سورفکتانت آمونیوم چهارتایی کاتیونی (CTAB)، سورفکتانت آنیونی (AOT) و غیریونی (Tween 80) با یک مایع‌یونی بر پایه ایمیدازولیوم کاتیونی ([C12 mim][Cl]) در نسبت حجمی یکسان 2:1 انجام گردیده است. مخلوط‌های دوتایی سورفکتانت در شوری آب دریا و آب با شوری کم (ppm 39711 و ppm 650) مورد بررسی قرار گرفته‌اند تا اثر غلظت نمک نیز بر هر یک از مخلوط‌های دوتایی مشاهده گردد. کمترین کشش‌بین‌سطحی و بالاترین فعالیت سطحی برای مخلوط‌ دوتایی [CTAB+[C12mim][Cl با IFT برابر mN/m 12/0 در غلظت های بالاتر از CMC بدست آمده است که نشان‌دهنده اثر هم افزایی نمک با سورفکتانت کاتیونی CTAB و مایع یونی [C12mim][Cl] می‏باشد. رفتار فازی و تغییر ترشوندگی سنگ کربناته دولومیتی نیز مورد بررسی قرار گرفته است. نتایج نشان داد که کاهش کشش بین سطحی موجب بهبود عملکرد محلول در تغییر ترشوندگی سنگ دولومیتی نشده است به گونه ای که مقادیر اولیه زاویه تماس از حالت شدیداً نفت‌دوست (با زاویه حدود °‏150) پس از 60 روز در تماس بودن با محلول‌های موردنظر در بهترین حالت موجب تغییر ترشوندگی به سمت شرایط خنثی (با زاویه حدود °‏110)  گشته است. به منظور بررسی همزمان دو مکانیسم کاهش کشش بین سطحی و تغییر ترشوندگی، ضریب پخش شوندگی و عدد موئینگی نیز محاسبه گردید. نتایج نشان داد که با وجود کاهش کشش بین سطحی نفت‌خام از mN/m 72/8 به کمتر از mN/m 5/0، این بهبود منجر به ایجاد تغییرات مطلوب در نوع میکروامولسیون و یا تغییر ترشوندگی سنگ دولومیتی نگردیده است و لذا تغییر قابل توجهی در عدد مویینگی ایجاد ننموده است. بیشترین عدد موئینگی و کم‌ترین ضریب پخش‌شوندگی به ترتیب برای مخلوط دوتایی [AOT+[C12mim][Cl و [CTAB+[C12mim][Cl به‌دست آمده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Chemical Surfactant Composition on the Spreading Coefficient and Capillary Number in Dolomite Oil Reservoir

نویسندگان [English]

  • Masoome Siyar
  • Mostafa Lashkarbolooki
Enhanced Oil Recovery (EOR) and Gas Processing Research Lab., Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
چکیده [English]

The main advantages of surfactant flooding, including the reduction of the interfacial tension between the aqueous surfactant solution and the residual oil and wettability alteration, make it a very potential method for the enhanced oil recovery processes. Since the surface activity of surfactants and their critical micelle concentration (CMC) can be improved by mixing them, this study was aimed to evaluate the binary mixture of various surfactants, including cationic quaternary ammonium surfactant (CTAB), anionic surfactant (AOT) and non-ionic (Tween 80) with an imidazolium-based ionic liquid ([C12mim] [Cl]) in the volume ratio of 2:1. Binary surfactant mixtures have been investigated in low and high salt concentrations (650 ppm and 38350 ppm) to see the effect of salt concentration on each of the binary mixtures. After investigation of the interfacial tension of each of these mixtures, the phase behavior of each of them was investigated. In addition, the wettability alteration on dolomitic carbonate rock has been investigated. To simultaneously investigate the two mechanisms including interfacial tension reduction and wettability alteration, the spreading coefficient and capillary number were calculated. The results showed that despite the decrease in the interfacial tension of crude oil from 8.72 mN/m to less than 0.5 mN/m, this improvement has no significant impact on the creation of a favorable microemulsion and change the wettability alteration of dolomitic rock into strongly water wet state, as a result, no significant changes in the capillary number and spreading coefficient were obtained.

کلیدواژه‌ها [English]

  • Ionic Liquids
  • Surfactant
  • Interfacial Tension
  • Spreading Coefficient
  • Wettability Alteration
  • Capillary Number
[1]. براری م.، لشکربلوکی م. و عابدینی ر. (1402) اثر طول زنجیر بخش کاتیونی مایع‌یونی بر پایه امیدازولیوم بر ضریب پخش شوندگی نفت خام برروی سنگ دولومیتی در حضور یون‌های سولفات و کلراید. پژوهش نفت، 33، 145-133.##
[2]. Wang, R., Li, Y., & Li, Y. (2014). Interaction between cationic and anionic surfactants: detergency and foaming properties of mixed systems, Journal of Surfactants and Detergents, 17, 881-888. ##
[3]. Liu, Z. Y., Li, Z. Q., Song, X. W., Zhang, J. C., Zhang, L., Zhang, L., & Zhao, S. (2014). Dynamic interfacial tensions of binary nonionic–anionic and nonionic surfactant mixtures at water–alkane interfaces, Fuel, 135, 91-98, doi.org/10.1016/j.fuel.2014.06.031. ##
[4]. Bian, S., Liu, P., Mao, Z., Huang, W., Zhu, Y., Zhang, L., & Zhang, L. (2024). Studying the factors determining the ultralow interfacial tensions of betaine solutions against crude oil, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 133453, doi.org/10.1016/j.colsurfa.2024.133453. ##
[5]. Kumari, R., Kakati, A., Nagarajan, R., & Sangwai, J. S. (2018). Synergistic effect of mixed anionic and cationic surfactant systems on the interfacial tension of crude oil-water and enhanced oil recovery, Journal of Dispersion Science and Technology, doi.org/10.1080/01932691.2018.1489280. ##
[6]. Welton, T., Ionic liquids: a brief history. Biophysical Reviews, 2018. 10(3): p. 691-706. ##
[7] . Lashkarbolooki, M., & Ayatollahi, S. (2018). Investigation of ionic liquids based on pyridinium and imidazolium as interfacial tension reducer of crude Oil− Water and their synergism with MgCl2, Journal of Petroleum Science and Engineering, 171, 414-421, doi.org/10.1016/j.petrol.2018.07.062. ##
[8]. Hezave, A. Z., Dorostkar, S., Ayatollahi, S., Nabipour, M., & Hemmateenejad, B. (2013). Effect of different families (imidazolium and pyridinium) of ionic liquids-based surfactants on interfacial tension of water/crude oil system, Fluid Phase Equilibria, 360, 139-145, doi.org/10.1016/j.fluid.2013.09.025. ##
[9]. Kumar, S., Panigrahi, P., Saw, R. K., & Mandal, A. (2016). Interfacial interaction of cationic surfactants and its effect on wettability alteration of oil-wet carbonate rock, Energy & Fuels, 30(4), 2846-2857, doi.org/10.1021/acs.energyfuels.6b00152. ## [10]. Guo, H., Dou, M., Hanqing, W., Wang, F., Yuanyuan, G., Yu, Z., & Li, Y. (2017). Proper use of capillary number in chemical flooding, Journal of Chemistry, doi.org/10.1155/2017/4307368. ##
[11]. احمدی ص.، وفایی سفتی م.، بهرامیان ع.، رستگار س ا. و جراحیان خ. (1394) بهینه‌سازی و مدل‌سازی زاویه تماس با استفاده از روش سطح پاسخ در فرآیند تغییر ترشوندگی سنگ کربناته توسط آب هوشمند، پژوهش نفت، 25، 83: 170-159، doi: 10.22078/ pr.2015.541. ##
[12]. منتظری، م.، شهرآبادی، ع.، نورعلیشاهی، ع.، موسویان، م. ع. و حلاج ثانی، ا. (1397) بررسی پدیده تغییر ترشوندگی در فرآیند تزریق آب هوشمند به مخازن کربناته با استفاده از آزمایش پتانسیل زتا و زاویه تماس، پژوهش نفت، 28، 4-97: 39-29، doi: 10.22078/pr.2018.2813.2304. . ##
[13]. محمدی، م. و ریاحی، س. (1398) بررسی عملکرد و سازگاری نمونه آب‌های هوشمند حاوی بازدارنده‌های رسوب در مخازن کربناته. پژوهش نفت، 29، 98-6: 23-4، doi: 10.22078/pr.2019.3585.2636.. ##
[14]. Siyar, M., & Lashkarbolooki, M. (2022). Evaluation of the interfacial tension of binary surfactant mixtures and crude oil using the response surface method, Journal of Molecular Liquids, 366, 120253, doi.org/10.1016/j.molliq.2022.120253. ##
[15] Barari, M., Lashkarbolooki, M., & Abedini, R. (2021). Interfacial properties of crude oil/imidazolium based ionic liquids in the presence of NaCl and Na2SO4 during EOR processm, Journal of Molecular Liquids, 327, 114845, doi.org/10.1016/j.molliq.2020.114845. ##
[16]. Tyagi, P., & Tyagi, R. (2009). Synthesis, structural properties and applications of gemini surfactants: a review, Tenside Surfactants Detergents, 46(6), 373-382, doi.org/10.3139/113.110045. ##
[17]. Stauff J (1956) Solvent Properties of Amphiphilic Compounds, von PA Winsor. Butterworths Scientific Publ. Ltd., London. 1954. 1. Aufl. IX, 270 S., gebd. 40 s. Angewandte Chemie. 68(15): 504. ##
[18] Massarweh O. & Abushaikha A. S. (2020) The use of surfactants in enhanced oil recovery: A review of recent advances. Energy Reports. 6: 3150. ##
[19]. Tan, Y., & Guo, M. (2013). Using surface free energy method to study the cohesion and adhesion of asphalt mastic, Construction and Building Materials, 47, 254-260, doi.org/10.1016/j.conbuildmat.2013.05.067. ##
[20]. Lamperti, R., Grenfell, J., Sangiorgi, C., Lantieri, C., & Airey, G. D. (2015). Influence of waxes on adhesion properties of bituminous binders, Construction and Building Materials, 76, 404-412, doi.org/10.1016/j.conbuildmat.2014.11.058. ##
[21]. Kakar, M. R., Hamzah, M. O., Akhtar, M. N., & Woodward, D. (2016). Surface free energy and moisture susceptibility evaluation of asphalt binders modified with surfactant-based chemical additive, Journal of Cleaner Production, 112, 2342-2353, doi.org/10.1016/j.jclepro.2015.10.101. ##
[22]. Lashkarbolooki, M., & Ayatollahi, S. (2018). Investigating injection of low salinity brine in carbonate rock with the assist of works of cohesion and adhesion and spreading coefficient calculations, Journal of Petroleum Science and Engineering, 161, 381-389, doi.org/10.1016/j.petrol.2017.12.010. ##
[23]. Moustafa HM (2017) Oil Recovery by Surfactant Flooding; Sensitivity Analysis to Technical Parameters and Economic Analysis, Master thesis, United Arab Emirates University. ##
[24]. Hamidian, R., Lashkarbolooki, M., & Amani, H. (2019). Ion type adjustment with emphasize on the presence of NaCl existence; measuring interfacial tension, wettability and spreading of crude oil in the carbonate reservoir, Journal of Petroleum Science and Engineering, 182, 106266, doi.org/10.1016/j.petrol.2019.106266. ##
[25]. Negm, N. A., & Sabagh, A. M. E. (2011). Interaction between cationic and conventional nonionic surfactants in the mixed micelle and monolayer formed in aqueous medium. Química Nova, 34, 1007-1013و doi.org/10.1590/S0100-40422011000600018. ##
[26]. Housaindokht, M. R., & Pour, A. N. (2012). Study the effect of HLB of surfactant on particle size distribution of hematite nanoparticles prepared via the reverse microemulsion, Solid State Sciences, 14(5), 622-625, doi.org/10.1016/j.solidstatesciences.2012.01.016. ##