مدل‌سازی عددی اثر شکاف طبیعی در گسترش شکافت هیدرولیکی بر پایه روش ناحیه چسبنده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده نفت و مهندسی شیمی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه مهندسی معدن، دانشکده فنی و مهندسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 گروه زمین‌شناسی، دانشکده علوم و فناوری‌های همگرا، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

تولید نفت از مخازن هیدروکربوری در بسیاری از موارد به دلیل پایین بودن تراوایی و تخلخل ثانویه و یا کاهش تراوایی سازند به علت صدمات ناشی از حفاری، رسوبات آسفالتین یا دیگر مشکلات در حد قابل قبولی نبوده و این موارد موجب کاهش درصد بازیافت نفت از این مخازن می‌گردد که برای رفع این مشکل می‌توان از روش شکافت هیدرولیکی استفاده کرد. در این مطالعه، یک مدل جدید بر اساس روش ناحیه چسبنده (CZM) و با در نظر گرفتن آسیب‌‌‌‌های ناشی از تنش برای شبیه‌‌سازی اثر متقابل شکافت هیدرولیکی و شکاف طبیعی به‌وسیله نرم‌افزار آباکوس (ABAQUS) ایجاد شده است. اثر اختلاف تنش افقی و زاویه برخورد در محل تقاطع بین شکافت هیدرولیکی و شکاف‌‌ طبیعی و همچنین تأثیر مقاومت سیمانی شکاف طبیعی بر هندسه گسترش شکافت هیدرولیکی مورد بررسی قرار گرفته است. شکافت هیدرولیکی ضمن شروع و گسترش و برخورد با شکاف طبیعی می‌تواند به داخل آن منحرف شده، با قطع کردن شکاف طبیعی از آن عبور نماید و یا ابتدا به داخل شکاف طبیعی منحرف شده و در ادامه از آن عبور نماید. هرچه زاویه برخورد و اختلاف تنش افقی بیشتر باشد، عبور شکاف هیدرولیکی از شکاف طبیعی به سهولت انجام می‌گیرد. افزایش مقاومت سیمانی شکاف طبیعی منجر به تغییر رفتار شکافت هیدرولیکی از حالت انحرافی به قطع شدگی می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Simulation of the Effect of Natural Fracture in Hydraulic Fracture Propagation Based on the Cohesive Zone Model

نویسندگان [English]

  • Alireza Safarkhanloo 1
  • Ali Naghi Dehghan 2
  • Seyed Jamal Sheikhzakariaee 3
1 Faculty of Chemical Engineering and Petroleum, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Mining Engineering, Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Department of Geology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

In many cases some barriers like low permeability, secondary porosity and decreasing in formation permeability due to damages casued by drilling, asphaltene and other problems confine oil production rate in unacceptable region and These problems reduce percentage of oil recovery from these reservoirs, These problems can be solved by utilizing hydraulic fracture method. A new model based on cohesive zone method coupling stress-seepage damage filed is developed to simulate the interaction between hydraulic fracture and natural fracture with using ABAQUS software. The effect of differential stress and approaching angle on the intersection between hydraulic fracture and natural fracture, as well as the effect of natural fracture cementing strength on the geometry of  hydraulic fracture propagation, have been investigated. While the hydraulic fracture initiates, propagates, and intersects with the natural fracture, it can either deflect into it or cross it by severing the natural fracture. The greater the approaching angle and differential stress , the easier it is for the hydraulic fracture to cross the natural fracture.The behavior of hydraulic fracture changes from deflection to crossing as the natural fracture cementing strength is increased.

کلیدواژه‌ها [English]

  • Hydraulic Fracture
  • Natural Fracture
  • Approaching Angle
  • Cementing Strength
  • Numerical Simulation
  • Cohesive Zone Method
[1]. Koshelev, V., & Ghassemi, A. (2003). Hydraulic fracture propagation near a natural discontinuity, In Proceedings of the 28th workshop on geothermal reservoir engineering, Stanford, California: Stanford University.##
[2]. Bunger, A. P., Zhang, X., & Jeffrey, R. G. (2012). Parameters affecting the interaction among closely spaced hydraulic fractures, SPE Journal, 17(01), 292-306, doi.org/10.2118/140426-PA. ##
[3]. Valkó, P., & Economides, M. J. (1995). Hydraulic fracture mechanics, 28, 206, Chichester: Wiley. ##
[4]. Geertsma, J., & De Klerk, F. (1969). A rapid method of predicting width and extent of hydraulically induced fractures, Journal of Petroleum Technology, 21(12), 1571-1581, doi.org/10.2118/2458-PA. ##
[5]. Green, A. E., & Sneddon, I. N. (1950, January). The distribution of stress in the neighbourhood of a flat elliptical crack in an elastic solid, In Mathematical Proceedings of the Cambridge Philosophical Society, 46,(1), 159-163, Cambridge University Press, doi.org/10.1017/S0305004100025585. ##
[6]. Perkins, T. K., & Kern, L. R. (1961). Widths of hydraulic fractures, Journal of Petroleum Technology, 13(09), 937-949. ##
[7]. Bahorich, B., Olson, J. E., & Holder, J. (2012). Examining the effect of Cemented Natural Fractures on Hydraulic Fracture Propagation in Hydrostone Block Experiments, In SPE Annual Technical Conference and Exhibition, OnePetro, doi.org/10.2118/160197-MS. ##
[8]. Zhou, J., Chen, M., Jin, Y., & Zhang, G. Q. (2008). Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs, International Journal of Rock Mechanics and Mining Sciences, 45(7), 1143-1152, doi.org/10.1016/j.ijrmms.2008.01.001. ##
[9]. دهقان، ع. ن.، گشتاسبی، ک.، آهنگری، ک.، جین، ی. و میسکیمینس، ج.، "مکانیسم شروع و گسترش شکست با استفاده از یک سیستم آزمایش شکافت هیدرولیکی سه محوره بر روی نمونه‌هایی از بلوک‎های سیمانی"، پژوهش نفت، شماره 2-85، زمستان 94، doi: 10.22078/pr.2016.607. ##
[10]. دهقان، ع. ن. و خدایی، م.، "مطالعه آزمایشگاهی تاثیر شکاف‎ از پیش موجود بر گسترش شکافت هیدرولیکی تحت تنش‎های سه محوری واقعی"، پژوهش نفت، شماره 95، مهر و آبان 96، doi:10.22078/pr.2017.2239.2039. ##
[11]. دهقان ع ن، "مطالعه آزمایشگاهی اثر سیمان شدگی شکاف طبیعی بر گسترش شکافت هیدرولیکی در مخازن نفت و گاز نامتعارف" پژوهش نفت، شماره 105، خرداد و تیر 98، doi: 10.22078/pr.2018.3353.2539. ##
[12]. Dehghan, A. N. (2020). An experimental investigation into the influence of pre-existing natural fracture on the behavior and length of propagating hydraulic fracture, Engineering Fracture Mechanics, 240, 107330, doi.org/10.1016/j.engfracmech.2020.107330. ##
[13]. Dehghan, A. N., Goshtasbi, K., Ahangari, K., & Jin, Y. (2015). Experimental investigation of hydraulic fracture propagation in fractured blocks. Bulletin of Engineering Geology and the Environment, 74, 887-895. ##
[14]. Dehghan, A. N., Goshtasbi, K., Ahangari, K., & Jin, Y. (2015). The effect of natural fracture dip and strike on hydraulic fracture propagation. International Journal of Rock Mechanics and Mining Sciences, 75, 210-215, doi.org/10.1016/j.ijrmms.2015.02.001. ##
[15]. Dehghan, A. N., Goshtasbi, K., Ahangari, K., & Jin, Y. (2016). Mechanism of fracture initiation and propagation using a tri-axial hydraulic fracturing test system in naturally fractured reservoirs, European Journal of Environmental and Civil Engineering, 20(5), 560-585, doi.org/10.1080/19648189.2015.1056384. ##
[16]. De Pater, C. J., & Beugelsdijk, L. J. L. (2005), Experiments and numerical simulation of hydraulic fracturing in naturally fractured rock, In ARMA US Rock Mechanics/Geomechanics Symposium, ARMA-05, ARMA. ##
[17]. Jeffrey, R. G., Zhang, X., & Thiercelin, M. J. (2009). Hydraulic fracture offsetting in naturally fractures reservoirs: quantifying a long-recognized process, In SPE hydraulic fracturing technology conference, OnePetro.. ##
[18]. Guo, J., Zhao, X., Zhu, H., Zhang, X., & Pan, R. (2015). Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method, Journal of Natural Gas Science and Engineering, 25, 180-188, doi.org/10.1016/j.jngse.2015.05.008. ##
[19]. Dehghan, A. N., Goshtasbi, K., Ahangari, K., Jin, Y., & Bahmani, A. (2017). 3D numerical modeling of the propagation of hydraulic fracture at its intersection with natural (pre-existing) fracture, Rock Mechanics and Rock Engineering, 50, 367-386. ##
[20]. Zheng, H., Pu, C., & Sun, C. (2020). Numerical investigation on the hydraulic fracture propagation based on combined finite-discrete element method, Journal of Structural Geology, 130, 103926, doi.org/10.1016/j.jsg.2019.103926. ##
[21]. Tan, P., Jin, Y., & Pang, H. (2021). Hydraulic fracture vertical propagation behavior in transversely isotropic layered shale formation with transition zone using XFEM-based CZM method, Engineering Fracture Mechanics, 248, 107707, doi.org/10.1016/j.engfracmech.2021.107707. ##
[22]. Zou, J., Jiao, Y. Y., Tan, F., Lv, J., & Zhang, Q. (2021). Complex hydraulic-fracture-network propagation in a naturally fractured reservoir, Computers and Geotechnics, 135, 104165, doi.org/10.1016/j.compgeo.2021.104165. ##
[23]. Sun, T., Zeng, Q., & Xing, H. (2022). A quantitative model to predict hydraulic fracture propagating across cemented natural fracture, Journal of Petroleum Science and Engineering, 208, 109595, doi.org/10.1016/j.petrol.2021.109595. ##
[24]. Liu, Y., Hu, Y., & Kang, Y. (2022). The propagation of hydraulic fractures in a natural fracture network: A numerical study and its implications, Applied Sciences, 12(9), 4738, doi.org/10.3390/app12094738. ##
[25]. Zhang, L., Zhou, J., Braun, A., & Han, Z. (2018). Sensitivity analysis on the interaction between hydraulic and natural fractures based on an explicitly coupled hydro-geomechanical model in PFC2D, Journal of Petroleum Science and Engineering, 167, 638-653, doi.org/10.1016/j.petrol.2018.04.046. ##
[26]. Salahi, A., Dehghan, A. N., Sheikhzakariaee, S. J., & Davarpanah, A. (2021). Sand production control mechanisms during oil well production and construction, Petroleum Research, 6(4), 361-367, doi.org/10.1016/j.ptlrs.2021.02.005. ##
[27]. عبدالهی ‌فرد، ایرج، علوی، سیداحمد، و مختاری، محمد. (1385). چهارچوب ساختاری دشت آبادان (جنوب غربی ایران)‌ و شمال خلیج فارس بر اساس داده های ژئوفیزیکی. مجله علوم دانشگاه تهران، 32(3 (بخش زمین شناسی 2))، 120-107. ##
[28]. Kregting, R. (2005). Cohesive zone models: towards a robust implementation of irreversible behavior. Philips Applied Technologies, 193, 3035-3056. ##
[29]. گزارش‌های منتشر نشده شرکت ملی مناطق نفت خیز جنوب. ##
[30]. Zou, Y., Zhang, S., Ma, X., Zhou, T., & Zeng, B. (2016). Numerical investigation of hydraulic fracture network propagation in naturally fractured shale formations. Journal of Structural Geology, 84, 1-13, doi.org/10.1016/j.jsg.2016.01.004. ##