[1]. ایمانی، م.، طهماسبپور، م. و سانچز خیمنز، پ. (1402). مقایسه عملکرد جاذبهای کلسیمی تهیهشده از منابع سنگآهک و پوسته تخممرغ در جذب دیاکسیدکربن طی فرآیند چرخه کلسیم و بهبود کارایی آنها، پژوهش نفت، 33(1402-2)، 170-146، 10.22078 pr.2023.ا/doi:4921.3199.##
[2]. مالکی، ن. و مطهری، ک. (1398) عملکرد جذب دی اکسید کربن در محلول پیزایلیلن دی آمین: اندازهگیری آزمایشگاهی و مدلسازی با استفاده از تئوری پاسخ سطح، پژوهش نفت، 29(98-1)، 135-145، 10.22078 pr.2018.ا/doi:3420.2566. ##
[3]. اکبری، م. و شریفنیا، ش. (1396). ساخت نانوکامپوزیت Fe2O3/ZnO با استفاده از روش سنتز احتراقی محلول در تبدیل فتوکاتالیستی گازهای گلخانهای، پژوهش نفت، 27(4-96)، 105-118، 10.22078 .pr.2017ا/doi: 2454.2137.##
[4]. Sattari, F., Tahmasebpour, M., & Mohammadpourfard, M. (2021). Modeling the calcium looping process with an emphasis on the bed hydrodynamics and sorbent characteristics, Amirkabir Journal of Mechanical Engineering, 53(5), 2807-2820, doi: 10.22060/mej.2020.17363.6583. ##
[5]. Yaghoobi-Khankhajeh, S., Alizadeh, R., & Zarghami, R. (2018). Adsorption modeling of CO2 in fluidized bed reactor, Chemical Engineering Research and Design, 129, 111-121, doi.org/10.1016/j.cherd.2017.10.037. ##
[6]. Hanak, D. P., Michalski, S., & Manovic, V. (2020). Supercritical CO2 cycle for coal-fired power plant based on calcium looping combustion, Thermal Science and Engineering Progress, 20, 100723, doi.org/10.1016/j.tsep.2020.100723. ##
[7]. Diego, M. E., Arias, B., Alonso, M., & Abanades, J. C. (2013). The impact of calcium sulfate and inert solids accumulation in post-combustion calcium looping systems. Fuel, 109, 184-190, doi.org/10.1016/j.fuel.2012.11.062. ##
[8]. Romano, M. C. (2012). Modeling the carbonator of a Ca-looping process for CO2 capture from power plant flue gas, Chemical Engineering Science, 69(1), 257-269, doi.org/10.1016/j.ces.2011.10.041. ##
[9]. Chen, S., Qin, C., Yin, J., Zhou, X., Chen, S., & Ran, J. (2021). Understanding sulfation effect on the kinetics of carbonation reaction in calcium looping for CO2 capture. Fuel Processing Technology, 221, 106913, doi.org/10.1016/j.fuproc.2021.106913. ##
[10]. Shimizu, T., Hirama, T., Hosoda, H., Kitano, K., Inagaki, M., & Tejima, K. (1999). A twin fluid-bed reactor for removal of CO2 from combustion processes, Chemical Engineering Research and Design, 77(1), 62-68, doi.org/10.1205/026387699525882. ##
[11]. Sattari, F., Tahmasebpoor, M., Valverde, J. M., Ortiz, C., & Mohammadpourfard, M. (2021). Modelling of a fluidized bed carbonator reactor for post-combustion CO2 capture considering bed hydrodynamics and sorbent characteristics, Chemical Engineering Journal, 406, 126762, doi.org/10.1016/j. cej.2020.126762. ##
[12]. Salaudeen, S. A., Acharya, B., & Dutta, A. (2018). CaO-based CO2 sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling, Journal of CO2 Utilization, 23, 179-199, doi.org/10.1016/j.jcou.2017.11.012. ##
[13]. Arias, B., Abanades, J. C., & Grasa, G. S. (2011). An analysis of the effect of carbonation conditions on CaO deactivation curves, Chemical Engineering Journal, 167(1), 255-261, doi.org/10.1016/j.cej.2010.12.052. ##
[14]. Lee, D. K. (2004). An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chemical Engineering Journal, 100(1-3), 71-77, doi.org/10.1016/j.cej.2003.12.003. ##
[15]. Grasa, G. S., Abanades, J. C., Alonso, M., & González, B. (2008). Reactivity of highly cycled particles of CaO in a carbonation/calcination loop, Chemical Engineering Journal, 137(3), 561-567, doi.org/10.1016/j.cej.2007.05.017. ##
[16]. Bhatia, S. K., & Perlmutter, D. D. (1980). A random pore model for fluid‐solid reactions: I. Isothermal, kinetic control, AIChE Journal, 26(3), 379-386, doi.org/10.1002/aic.690260308. ##
[17]. Balsamo, M., & Montagnaro, F. (2022). Fractal-like random pore model applied to CO2 capture by CaO sorbent. Chemical Engineering Science, 254, 117649, doi.org/10.1016/j.ces.2022.117649. ##
[18]. Sedghkerdar, M. H., & Mahinpey, N. (2015). A modified grain model in studying the CO2 capture process with a calcium-based sorbent: A semianalytical approach, Industrial & Engineering Chemistry Research, 54(3), 869-877, doi.org/10.1021/ie503989n. ##
[19]. Salaudeen, S. A., Acharya, B., & Dutta, A. (2018). CaO-based CO2 sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling, Journal of CO2 Utilization, 23, 179-199, doi.org/10.1016/j.jcou.2017.11.012. ##
[20]. Arias, B., Cordero, J. M., Alonso, M., & Abanades, J. C. (2012). Sulfation rates of cycled CaO particles in the carbonator of a Ca‐looping cycle for postcombustion CO2 capture, AIChE Journal, 58(7), 2262-2269, doi.org/10.1002/aic.12745. ##
[21]. Cai, J., Wang, S., & Kuang, C. (2017). Modeling of carbonation reaction for CaO-based limestone with CO2 in multitudinous calcination-carbonation cycles. International Journal of Hydrogen Energy, 42(31), 19744-19754, doi.org/10.1016/j.ijhydene.2017.06.173. ##
[22]. Cordero, J. M., & Alonso, M. (2015). Modelling of the kinetics of sulphation of CaO particles under CaL reactor conditions, Fuel, 150, 501-511, doi.org/10.1016/j.fuel.2015.02.075. ##
[23]. Montagnaro, F., Balsamo, M., & Salatino, P. (2016). A single particle model of lime sulphation with a fractal formulation of product layer diffusion, Chemical Engineering Science, 156, 115-120, doi.org/10.1016/j.ces.2016.09.021. ##
[24]. Li, Z. S., Fang, F., Tang, X. Y., & Cai, N. S. (2012). Effect of temperature on the carbonation reaction of CaO with CO2, Energy & Fuels, 26(4), 2473-2482, doi.org/10.1021/ef201543n. ##