[1]. Alomair, O. A., Matar, K. M., & Alsaeed, Y. H. (2014). Nanofluids application for heavy oil recovery, In SPE Asia Pacific Oil and Gas Conference and Exhibition, SPE-171539, doi.org/10.2118/171539-MS.##
[2]. Hu, L., & Chen, M. (1996). Preparation of ultrafine powder: The frontiers of chemical engineering, Materials Chemistry and Physics, 43(3), 212-219, doi.org/10.1016/0254-0584(95)01640-G. ##
[3]. Sun, X., Zhang, Y., Chen, G., & Gai, Z. (2017). Application of nanoparticles in enhanced oil recovery: a critical review of recent progress. Energies, 10(3), 345, doi.org/10.3390/en10030345. ##
[4]. Aveyard, R., Binks, B. P., & Clint, J. H. (2003). Emulsions stabilised solely by colloidal particles, Advances in colloid and interface science, 100, 503-546, doi.org/10.1016/S0001-8686(02)00069-6.
[5]. Chengara, A., Nikolov, A. D., Wasan, D. T., Trokhymchuk, A., & Henderson, D. (2004). Spreading of nanofluids driven by the structural disjoining pressure gradient, Journal of Colloid And Interface Science, 280(1), 192-201, doi.org/10.1016/j.jcis.2004.07.005. ##
[6]. Wasan, D., Nikolov, A., & Kondiparty, K. (2011). The wetting and spreading of nanofluids on solids: Role of the structural disjoining pressure. Current Opinion in Colloid & Interface Science, 16(4), 344-349, doi.org/10.1016/j.cocis.2011.02.001. ##
[7]. Zamani, A., Maini, B., & Pereira‐Almao, P. (2012). Flow of nanodispersed catalyst particles through porous media: Effect of permeability and temperature, The Canadian Journal of Chemical Engineering, 90(2), 304-314, doi.org/10.1002/cjce.20629. ##
[8]. Shah, R. D., & Rusheet, D. (2009, October). application of NANOPARTICLES saturated injection Gasses for EOR OF heavy oils, In SPE paper-129539-STU presented at The SPE Technical Conference and Exhibition Held in New Orleans Louisiana. ##
[9]. Molnes, S. N., Torrijos, I. P., Strand, S., Paso, K. G., & Syverud, K. (2016). Sandstone injectivity and salt stability of cellulose nanocrystals (CNC) dispersions—Premises for use of CNC in enhanced oil recovery, Industrial Crops and Products, 93, 152-160, doi.org/10.1016/j.indcrop.2016.03.019. ##
[10]. Al-Anssari, S., Barifcani, A., Wang, S., Maxim, L., & Iglauer, S. (2016). Wettability alteration of oil-wet carbonate by silica nanofluid, Journal of Colloid and Interface Science, 461, 435-442, doi.org/10.1016/j.jcis.2015.09.051. ##
[11]. Salem Ragab, A. M., & Hannora, A. E. (2015, October). A Comparative investigation of nano particle effects for improved oil recovery–experimental work. In SPE Kuwait oil and gas show and conference, SPE-175395, doi.org/10.2118/175395-MS. ##
[12]. Suleimanov, B. A., Ismailov, F. S., & Veliyev, E. F. (2011). Nanofluid for enhanced oil recovery, Journal of Petroleum science and Engineering, 78(2), 431-437, doi.org/10.1016/j.petrol.2011.06.014. ##
[13]. Sheshdeh, M. J. (2015, April). A review study of wettability alteration methods with regard to nano-materials application, In SPE Norway Subsurface Conference? (pp. SPE-173884), doi.org/10.2118/173884-MS. ##
[14]. Celia, E., Darmanin, T., de Givenchy, E. T., Amigoni, S., & Guittard, F. (2013). Recent advances in designing superhydrophobic surfaces, Journal of Colloid and Interface Science, 402, 1-18, doi.org/10.1016/j.
jcis.2013.03.041. ##
[15]. Behzadi, A., & Mohammadi, A. (2016). Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery, Journal of Nanoparticle Research, 18, 1-19. ##
[16]. Khezerloo‐ye Aghdam, S., Kazemi, A., & Ahmadi, M. (2024). Performance evaluation of different types of surfactants to inhibit clay swelling during chemical enhanced oil recovery, The Canadian Journal of Chemical Engineering, 102(1), 481-494, doi.org/10.1002/cjce.25028. ##
[17]. Aghdam, S. K. Y., Kazemi, A., & Ahmadi, M. (2023). Studying the effect of surfactant assisted low-salinity water flooding on clay-rich sandstones. Petroleum, doi: doi.org/10.1016/j.petlm.2023.09.006. ##
[18]. Aghdam, S. K. Y., Moslemizadeh, A., Madani, M., Ghasemi, M., Shahbazi, K., & Moraveji, M. K. (2019). Mechanistic assessment of Seidlitzia Rosmarinus-derived surfactant for restraining shale hydration: a comprehensive experimental investigation, Chemical Engineering Research and Design, 147, 570-578, doi.org/10.1016/j.cherd.2019.05.042. ##
[19]. Aghdam, S. K. Y., Kazemi, A., & Ahmadi, M. (2021). A laboratory study of a novel bio-based nonionic surfactant to mitigate clay swelling, Petroleum, 7(2), 178-187, doi.org/10.1016/j.petlm.2020.09.002. ##
[20]. Aghdam, K. Y., Kazemi, A., & Ahmadi, M. (2023). Theoretical and experimental study of fine migration during low-salinity water flooding: effect of brine composition on interparticle forces. SPE Reservoir Evaluation & Engineering, 26(02), 228-243, doi.org/10.2118/212852-PA. ##
[21]. Nazari Moghaddam, R., Bahramian, A., Fakhroueian, Z., Karimi, A., & Arya, S. (2015). Comparative study of using nanoparticles for enhanced oil recovery: wettability alteration of carbonate rocks. Energy & Fuels, 29(4), 2111-2119, doi.org/10.1021/ef5024719. ##
[22]. Esfandyari Bayat, A., Junin, R., Samsuri, A., Piroozian, A., & Hokmabadi, M. (2014). Impact of metal oxide nanoparticles on enhanced oil recovery from limestone media at several temperatures. Energy & Fuels, 28(10), 6255-6266, doi.org/10.1021/ef5013616. ##
[23].Nwidee, L. N., Al-Anssari, S., Barifcani, A., Sarmadivaleh, M., Lebedev, M., & Iglauer, S. (2017). Nanoparticles influence on wetting behaviour of fractured limestone formation, Journal of Petroleum Science and Engineering, 149, 782-788, doi.org/10.1016/j.petrol.2016.11.017. ##
[24].Al-Anssari, S., Wang, S., Barifcani, A., Lebedev, M., & Iglauer, S. (2017). Effect of temperature and SiO2 nanoparticle size on wettability alteration of oil-wet calcite, Fuel, 206, 34-42, doi.org/10.1016/j.fuel.2017.05.077. ##
[25]. McElfresh, P., Holcomb, D., & Ector, D. (2012, June). Application of nanofluid technology to improve recovery in oil and gas wells, In SPE International Oilfield Nanotechnology Conference and Exhibition, SPE-154827), doi.org/10.2118/154827-MS. ##
[26]. Gao, C. (2007). Factors affecting particle retention in porous media, Emirates Journal for Engineering Research, 12(3), 1-7. ##
[27]. Esmaeilzadeh, P., Fakhroueian, Z., Bahramian, A., & Arya, S. (2013). Influence of ZrO2 nanoparticles including SDS and CTAB surfactants assembly on the interfacial properties of liquid-liquid, liquid-air and liquid-solid surface layers, Journal of Nano Research, 21, 15-21, doi.org/10.4028/www.scientific.net/JNanoR.21.15. ##
[28]. Esfandyari Bayat, A., Junin, R., Samsuri, A., Piroozian, A., & Hokmabadi, M. (2014). Impact of metal oxide nanoparticles on enhanced oil recovery from limestone media at several temperatures, Energy & fuels, 28(10), 6255-6266, doi.org/10.1021/ef5013616. ##
[29]. Nwidee, L. N., Lebedev, M., Barifcani, A., Sarmadivaleh, M., & Iglauer, S. (2017). Wettability alteration of oil-wet limestone using surfactant-nanoparticle formulation, Journal of Colloid and Interface Science, 504, 334-345, doi.org/10.1016/j.jcis.2017.04.078. ##
[30]. Seethepalli, A., Adibhatla, B., & Mohanty, K. K. (2004). Physicochemical interactions during surfactant flooding of fractured carbonate reservoirs, SPE journal, 9(04), 411-418, doi: 10.2118/89423-PA. ##