ارائه‌ روشی نوین برای بهینه‌سازی مکان‌ چاه‌های افقی جهت بهبود برداشت نفت

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی نفت، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

جانمایی چاه‌ها یکی از مهم‌ترین مسائل در توسعه میادین است. به‌دلیل هزینه بالای حفر چاه‌ها و تاثیر مکان چاه برروی تولید از مخزن، عدم حفر چاه در محل مناسب باعث کاهش تولید و افزایش هزینه‌ها می‌شود. در مکان‌یابی چاه‌های عمودی کافی است دو پارامتر x و y (مختصات سر چاهی) بهینه شوند اما در چاه‌های افقی یا انحرافی پارامتر z نیز باید وارد الگوریتم بهینه‌سازی شده، تعداد نقاط افزایش یافته و محدودیت‌های عملیاتی نیز باید در نظر گرفته شود که این نیز بر پیچیدگی مسئله و افزایش احتمال خطا می‌افزاید. در این پژوهش یک چارچوب اتوماتیک برای بهینه‌سازی مکان چاه افقی با در نظر گرفتن محدودیت‌های حفاری و براساس الگوریتم بهینه‌سازی ازدحام ذرات، کدنویسی شده است. تابع هدف به‌کار گرفته شده در این مطالعه، ارزش خالص فعلی است. در این چارچوب با توجه به محدودیت‌های عملیاتی و هندسه‌ چاه، تعداد متغیرهای الگوریتم بهینه‌سازی ازدحام ذرات مشخص می‌شود. سپس این الگوریتم، مقادیر پارامترها را به‌صورت تصادفی و با در نظر گرفتن محدودیت‌های مشخص، انتخاب کرده و وارد رویه‌ بهینه‌سازی می‌کند. این کار تا زمان رسیدن به معیار توقف ادامه می‌یابد. مکان و مسیر چاه افقی برای دو مدل مصنوعی ناهمگن و یک مدل استاندارد، بهینه‌سازی شد. چارچوب ارائه شده توانست پارامترهای x،y،z و نقطه‌ شروع و انتهای زاویه‌سازی را با رعایت محدودیت‌های حفاری تعیین شده توسط کاربر در انواع مختلف مدل‌های ناهمگن و استاندارد بهینه کند. در تمامی مدل‌های بررسی شده، ارزش خالص فعلی به‌طور میانگین، 22% افزایش یافت. در مدل‌های با ناهمگنی بیشتر ارزش خالص فعلی، افزایش بیشتری را نسبت به مدل‌های همگن داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Proposing a New Approach for Horizontal Well Placement Optimization for Enhancing Oil Production

نویسندگان [English]

  • Sajjad Moradi
  • Mohammad Sharifi
  • Reza Yousefzadeh
Department of Petroleum Engineering, AmirKabir University of Technology, Tehran, Iran
چکیده [English]

Optimizing the placement of wells is a crucial step in field development as it directly impacts production and cost. Inappropriate well placement can lead to decreased production and higher costs due to the expensive drilling process. Vertical well placement focuses on optimizing wellhead coordinates (x and y parameters), while horizontal and deviated wells require considering the depth of the wells (z parameter) along with operational limitations. This research presents an automatic framework that utilizes the particle swarm optimization algorithm to optimize the location of horizontal wells, taking into account drilling limitations. The objective function used is the net present value (NPV). This framework defines the number of particle swarm optimization variables based on operational constraints and well geometry. The algorithm randomly selects parameter values and applies the optimization procedure while considering specific constraints until the stop criteria are met. The framework successfully optimized the x, y, z, LP (Landing point), and KOP (Kick of Point) parameters in two heterogeneous synthetic models and a benchmark model (PUNQ_S3). On average, the net present value increased by 22% in all models, with greater heterogeneity resulting in a higher increase compared to homogeneous models.

کلیدواژه‌ها [English]

  • Field Development
  • Horizontal Well
  • Particle Swarm Optimization
  • Net Present Value
  • Drilling Limitations
[1]. Badru, O., & Kabir, C. S. (2003). Well placement optimization in field development. In SPE Annual Technical Conference and Exhibition. OnePetro, doi.org/10.2118/84191-MS.##
[2]. Yeten, B., Durlofsky, L. J., & Aziz, K. (2003). Optimization of nonconventional well type, location, and trajectory, SPE Journal, 8(03), 200-210, doi: 10.2118/86880-PA. ##
[3]. Tupac, Y. J., Faletti, L., Pacheco, M. A. C., & Vellasco, M. M. B. R. (2007). Evolutionary optimization of oilfield development, In SPE Digital Energy Conference and Exhibition, SPE-107552, doi.org/10.2118/107552-MS. ##
[4]. Maschio, C., Nakajima, L., & Schiozer, D. J. (2008). Production strategy optimization using genetic algorithm and quality map, In SPE Europec Featured at EAGE Conference and Exhibition?, SPE-113483, doi.org/10.2118/113483-MS. ##
[5]. Onwunalu, J. E., & Durlofsky, L. J. (2010). Application of a particle swarm optimization algorithm for determining optimum well location and type, Computational Geosciences, 14, 183-198, doi: 10.1007/s10596-009-9142-1. ##
[6]. Atashnezhad, A., Wood, D. A., Fereidounpour, A., & Khosravanian, R. (2014). Designing and optimizing deviated wellbore trajectories using novel particle swarm algorithms, Journal of Natural Gas Science and Engineering, 21, 1184-1204, doi.org/10.1016/j.jngse.2014.05.029. ##
[7]. Al Dossary, M. A., & Nasrabadi, H. (2016). Well placement optimization using imperialist competitive algorithm, Journal of Petroleum Science and Engineering, 147, 237-248., doi: https://doi.org/10.1016/j.petrol.2016.06.017. ##
[8]. Karkevandi-Talkhooncheh, A., Sharifi, M., & Ahmadi, M. (2018). Application of hybrid adaptive neuro-fuzzy inference system in well placement optimization, Journal of Petroleum Science and Engineering, 166, 924-947, doi.org/10.1016/j.petrol.2018.03.050. ##
[9]. Rostamian, A., Jamshidi, S., & Zirbes, E. (2019). The development of a novel multi-objective optimization framework for non-vertical well placement based on a modified non-dominated sorting genetic algorithm-II, Computational Geosciences, 23, 1065-1085, doi: 10.1007/s10596-019-09863-2. ##
[10]. Lyu, Z., Lei, Q., Yang, L., Heaney, C., Song, X., Salinas, P., & Pain, C. (2021). A novel approach to optimising well trajectory in heterogeneous reservoirs based on the fast-marching method, Journal of Natural Gas Science and Engineering, 88, 103853, doi: 10.1016/j.jngse.2021.103853. ##
[11]. Kianinejad, A., Salehi, A., Darabi, H., Thavarajah, R., & Ruta, N. (2022). Optimal horizontal well placement with deep-learning-based production forecast in unconventional assets, In SPE Annual Technical Conference and Exhibition, OnePetro. ##
[12]. Raji, S., Dehnamaki, A., Somee, B., & Mahdiani, M. R. (2022). A new approach in well placement optimization using metaheuristic algorithms, Journal of Petroleum Science and Engineering, 215, 110640., doi: https://doi.org/10.1016/j.petrol.2022.110640. ##
[13]. Dai, Q., Zhang, L., Zhang, K., Chen, G., Ma, X., Wang, J., & Yang, Y. (2023). An efficient infill well placement optimization approach for extra-low permeability reservoir, Journal of Energy Resources Technology, 145(3), 033001, doi.org/10.1115/1.4055198. ##
[14]. Mahmood, H. A., & Al-Fatlawi, O. (2022). Well placement optimization: A review, In AIP Conference Proceedings, 2443, 1, AIP Publishing, doi: 10.1063/5.0091904. ##
[15]. Eberhart, R., & Kennedy, J. (1995), Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks, 4, 1942-1948. ##
[16]. Yang, X. S. (2010). Engineering optimization: an introduction with metaheuristic applications, John Wiley & Sons.
[17]. Ding, S., Jiang, H., Li, J., & Tang, G. (2014). Optimization of well placement by combination of a modified particle swarm optimization algorithm and quality map method, Computational Geosciences, 18, 747-762, doi: 10.1007/s10596-014-9422-2. ##
[18]. Azar, J. J., & Samuel, G. R. (2007). Drilling Engineering Pennwell Corporation. Tulsa, OK. ##
[19]. PUNQ-S3 MODEL, [Online]. Available: https://www.coventry.ac.uk/contentassets/21d815453cff43a686f9f84596c2fac6/punqs3.zip. ##