[1]. Hunter, R., Hunter, R. N., Read, J. and Self, A. (2015). The Shell Bitumen Handbook, 6 edn. ICE Publishing, London.##
[2]. McNally, T. (2011). Polymer modified bitumen: Properties and characterisation, Elsevier, doi.org/10.1533/9780857093721.1. ##
[3]. Costa, L., Silva, H. M., Oliveira, J. R., & Fernandes, S. R. (2013). Incorporation of waste plastic in asphalt binders to improve their performance in the pavement, International Journal of Pavement Research & Technology, 6(4), doi:10.6135/ijprt.org.tw/2013, 6(4).457. ##
[4]. Fernandes, S. R., Silva, H. M., & Oliveira, J. R. (2018). Recycled stone mastic asphalt mixtures incorporating high rates of waste materials. Construction and Building Materials, 187, 1-13, doi.org/10.1016/j.conbuildmat.2018.07.157. ##
[5]. Cao, X., Wang, H., Cao, X., Sun, W., Zhu, H., & Tang, B. (2018). Investigation of rheological and chemical properties asphalt binder rejuvenated with waste vegetable oil, Construction and Building Materials, 180, 455-463, doi.org/10.1016/j.conbuildmat.2018.06.001. ##
[6]. Hong, W., Mo, L., Pan, C., Riara, M., Wei, M., & Zhang, J. (2020). Investigation of rejuvenation and modification of aged asphalt binders by using aromatic oil-SBS polymer blend, Construction and Building Materials, 231, 117154, doi.org/10.1016/j.conbuildmat.2019.117154. ##
[7]. Rossi, C. O., Caputo, P., Loise, V., Miriello, D., Teltayev, B., & Angelico, R. (2017). Role of a food grade additive in the high temperature performance of modified bitumens, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 532, 618-624, doi.org/10.1016/j.colsurfa.2017.01.025. ##
[8]. Köfteci, S., Ahmedzade, P., & Kultayev, B. (2014). Performance evaluation of bitumen modified by various types of waste plastics, Construction and Building Materials, 73, 592-602, doi.org/10.1016/j.conbuildmat.2014.09.067.
[9]. غفارپور جهرمی. (2014). اصلاح خصوصیات قیر با نانورس. پژوهش نفت، 24(78)، 92-105،10.22078/ doi: pr.2014.379.. ##
[10]. DeRousseau, M. A., Kasprzyk, J. R., & Srubar Iii, W. V. (2018). Computational design optimization of concrete mixtures: A review, Cement and Concrete Research, 109, 42-53, doi.org/10.1016/j.cemconres.2018.04.007. ##
[11]. Hamzah, M. O., Golchin, B., & Tye, C. T. (2013). Determination of the optimum binder content of warm mix asphalt incorporating Rediset using response surface method, Construction and Building Materials, 47, 1328-1336, doi.org/10.1016/j.conbuildmat.2013.06.023. ##
[12]. Jeirani, Z., Jan, B. M., Ali, B. S., Noor, I. M., Hwa, S. C., & Saphanuchart, W. (2012). The optimal mixture design of experiments: Alternative method in optimizing the aqueous phase composition of a microemulsion, Chemometrics and Intelligent Laboratory Systems, 112, 1-7, doi.org/10.1016/j.chemolab.2011.10.008. ##
[13]. Varanda, C., Portugal, I., Ribeiro, J., Silva, A. M., & Silva, C. M. (2017). Optimization of bitumen formulations using mixture design of experiments (MDOE). Construction and Building Materials, 156, 611-620, doi.org/10.1016/j.conbuildmat.2017.08.146. ##
[15]. Wigena, A. H., Soleh, A. M., & Syafitri, U. D. (2019, October). Algorithms for i-optimal designs for ordinal response: a literature approach, In Journal of Physics: Conference Series, 1317(1), 012001, IOP Publishing, doi: 10.1088/1742-6596/1317/1/012001. ##
[16]. Li, Y., & Deng, X. (2021). An efficient algorithm for Elastic I‐optimal design of generalized linear models, Canadian Journal of Statistics, 49(2), 438-470, doi.org/10.1002/cjs.11571. ##
[17]. Azadikhah, K., Davallo, M., Kiarostami, V., & Mortazavinik, S. (2022). Modeling of malachite green adsorption onto novel polyurethane/SrFe12O19/clinoptilolite nanocomposite using response surface methodology and biogeography-based optimization-assisted multilayer neural network, Environmental Science and Pollution Research, 29(24), 36040-36056. ##
[18]. Farajvand, M., Kiarostami, V., Davallo, M., Ghaedi, A., & Fatahi, F. (2019). Rapid extraction of copper ions in water, tea, milk and apple juice by solvent-terminated dispersive liquid–liquid microextraction using p-sulfonatocalix (4) arene: optimization by artificial neural networks coupled bat inspired algorithm and response surface methodology, Journal of food science and technology, 56, 4224-4232. ##
[19]. Farajvand, M., Kiarostami, V., Davallo, M., & Ghaedi, A. (2019). Simultaneous extraction of Cu 2+ and Cd 2+ ions in water, wastewater, and food samples using solvent-terminated dispersive liquid–liquid microextraction: optimization by multiobjective evolutionary algorithm based on decomposition, Environmental Monitoring and Assessment, 191, 1-12. ##
[20]. Farajvand, M., Kiarostami, V., Davallo, M., & Ghaedi, A. (2018). Optimization of solvent terminated dispersive liquid–liquid microextraction of copper ions in water and food samples using artificial neural networks coupled bees algorithm, Bulletin of Environmental Contamination and Toxicology, 100, 402-408. ##
[21]. Ebrahimpoor, S., Kiarostami, V., Khosravi, M., Davallo, M., & Ghaedi, A. (2021). Optimization of tartrazineadsorption onto polypyrrole/srfe12o19/graphene oxide nanocomposite using central composite design and bat inspired algorithm with the aid of artificial neural networks, Fibers and Polymers, 22, 159-170. ##
[22]. Ebrahimpoor, S., Kiarostami, V., Khosravi, M., Davallo, M., & Ghaedi, A. (2019). Bees metaheuristic algorithm with the aid of artificial neural networks for optimization of acid red 27 dye adsorption onto novel polypyrrole/SrFe12O19/graphene oxide nanocomposite, Polymer Bulletin, 76, 6529-6553. ##
[23]. Ghaedi, A. M., Karamipour, S., Vafaei, A., Baneshi, M. M., & Kiarostami, V. (2019). Optimization and modeling of simultaneous ultrasound-assisted adsorption of ternary dyes using copper oxide nanoparticles immobilized on activated carbon using response surface methodology and artificial neural network. Ultrasonics sonochemistry, 51, 264-280, doi.org/10.1016/j.ultsonch.2018.10.007. ##
[24]. Vafaei, A., Ghaedi, A. M., Avazzadeh, Z., Kiarostami, V., Agarwal, S., & Gupta, V. K. (2021). Removal of hydrochlorothiazide from molecular liquids using carbon nanotubes: Radial basis function neural network modeling and culture algorithm optimization, Journal of Molecular Liquids, 324, 114766, doi.org/10.1016/j.molliq.2020.114766. ##
[25]. Jun, L., Yuxia, Z., & Yuzhen, Z. (2008). The research of GMA-g-LDPE modified Qinhuangdao bitumen, Construction and Building Materials, 22(6), 1067-1073, doi.org/10.1016/j.conbuildmat.2007.03.007. ##
[26]. Lu, X., Isacsson, U., & Ekblad, J. (1998). Low-temperature properties of styrene–butadiene–styrene polymer modified bitumens. Construction and Building Materials, 12(8), 405-414, doi.org/10.1016/S0950-0618(98)00032-4. ##
[27]. Brasileiro, L. L., Moreno-Navarro, F., Martínez, R. T., del Sol-Sánchez, M., Matos, J. M. E., & del Carmen Rubio-Gámez, M. (2019). Study of the feasability of producing modified asphalt bitumens using flakes made from recycled polymers, Construction and Building Materials, 208, 269-282, doi.org/10.1016/j.conbuildmat.2019.02.095. ##
[28]. Behnood, A., & Olek, J. (2017). Rheological properties of asphalt binders modified with styrene-butadiene-styrene (SBS), ground tire rubber (GTR), or polyphosphoric acid (PPA). Construction and Building Materials, 151, 464-478, doi.org/10.1016/j.conbuildmat.2017.06.115. ##
[29]. Aydemir, E. B., & Ozkul, M. H. (2020). Investigation of effect of bitumen chemical composition, elastomeric polymer and paraffin wax additives on the properties of bitumen by using response surface method. Construction and Building Materials, 234, 117414, doi.org/10.1016/j.conbuildmat.2019.117414. ##
[30]. Pyshyev, S., Gunka, V., Grytsenko, Y., Shved, M., & Kochubei, V. (2017). Oil and gas processing products to obtain polymers modified bitumen, International Journal of Pavement Research and Technology, 10(4), 289-296, doi.org/10.1016/j.ijprt.2017.05.001. ##