بهینه‌سازی شرایط اختلاط مواد ضایعاتی برای اصلاح قیر پایه با استفاده از طراحی مخلوط بهینه واریانس یکپارچه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی، دانشکده علوم، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشکده شیمی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

ضایعات صنایع مختلف از جمله پلیمرها و لجن‌ها می‌توانند در محیط‌زیست رها شده و صدمات جبران‌ناپذیری را سبب شوند. از این رو استفاده‌ی دوباره از آن‌ها در حوزه‌های مختلف بسیار با اهمیت است. از این رو هدف از این مطالعه، استفاده‌ی همزمان از ضایعات پلی‌اتیلن (PE)، لجن ضایعاتی حاصل از فرایند تصفیه‌ی روغن‌های کارکرده (WS) و استایرن-بوتادین-استایرن میکرونیزه برای بهبود کیفیت قیر پایه (22-PG58) می‌باشد. استفاده از روش طراحی مخلوط بهینه واریانس یکپارچه (I-OMD) که برای اولین بار جهت بهینه‌سازی شرایط اصلاح قیر به کار می‌رود، دومین هدف این پروژه می‌باشد. پاسخ‌های درجه‌ی نفوذ (Pen)، نقطه نرمی (SP)، کشش‌پذیری (Duct)، درجه‌ی نفوذ باقی‌مانده بعد از پیرشدگی کوتاه‌مدت (rPen) و تغییرات جرم بعد از پیرشدگی کوتاه‌مدت (CM) بر اساس متغیرهای مستقل PE ،SBS و WS با استفاده از روش طراحی مخلوط بهینه واریانس یکپارچه، بهینه شدند. تحت شرایط بهینه‌ی به دست آمده برای قیر اصلاح‌شده، خواص رئولوژیکی مورد‌ مطالعه قرار گرفتند. در شرایط بهینه‌ی به‌دست‌آمده با استفاده از این روش، مقادیر فاکتورهای مستقل PE ،SBS و WS به ترتیب ترتیب 3، 4 و 5% (وزنی/وزنی) بودند. همچنین در شرایط بهینه‌ی فوق، مقادیر پاسخ‌های Pen ،SP ،Duct ،rPen و CM به ترتیب dmm 51، oC 64، cm 27، 83% و 07/0% به دست آمدند. علاوه بر این، تحت شرایط I-OMD، پارامترهای رئولوژیکی قیر پایه اصلاح‌شده‌ی پلیمری و لجن ضایعاتی با استفاده از رئومتر تیرچه خمشی و رئومتر برشی دینامیکی، ویژگی‌های قیر 22-PG64 را از خود نشان داد. قیر اصلاح‌شده در مقایسه با مطالعات دیگر عملکرد بهتر در دماهای بالا، پیرشدگی کمتر در معرض گرما و هوا و همچنین مقاومت بیشتری در برابر شکستگی در دماهای پایین را نسبت به قیر اولیه از خود نشان داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of the Mixing Conditions of Waste Materials for the Modification of Base Bitumen Using Integrated Variance Optimal Mixture Design

نویسندگان [English]

  • Ashkan Irvanchi 1
  • Vahid Kiarostami 2
  • Mohammad Hojjati 1
  • Mohammad Reza Manafi 1
  • Mehran Davallo 2
1 Chemistry Department, Faculty of Science, South Tehran Branch, Islamic Azad University, Iran.
2 Chemistry Faculty, North Tehran Branch, Islamic Azad University, Iran
چکیده [English]

Various industries’ waste, including polymer and waste sludge, can be released into the environment and cause irreparable damage. Therefore, their reuse in different fields is very important. This study focuses on the simultaneous use of waste polyethylene (PE), oily waste sludge (WS) resulting from the oil refining process, and micronized styrene-butadiene-styrene to improve the quality of base bitumen (PG58-22). Using the integrated variance optimal mixture design (I-OMD) method, which is used for the first time to optimize bitumen modification conditions, is the second goal of this project. The percentage composition of independent variables, including PE, SBS, and WS, were optimized based on several responses such as penetration (Pen), softening point (SP), ductility (Duct), retained penetration after short-term ageing (rPen), and change of mass after short term ageing (CM). Under the optimal conditions obtained for the modified bitumen, the rheological properties were studied. In the optimal conditions obtained using this method, the values of the independent factors PE, SBS, and WS were 3, 5, and 4% (wt/wt), respectively. Also, in the above optimal conditions, the response values of Pen, SP, Duct, rPen, and CM were 51 dmm, 64 °C, 27 cm, 83%, and 0.07%, respectively. In addition, under the above conditions, the rheological parameters of modified bitumen obtained from the bending beam rheometer and dynamic shear rheometer showed the characteristics of PG64-22 bitumen.

کلیدواژه‌ها [English]

  • Bitumen
  • Polyethylene
  • Styrene-butadiene-styrene
  • Waste Sludge
  • Mixture Design
[1]. Hunter, R., Hunter, R. N., Read, J. and Self, A. (2015). The Shell Bitumen Handbook, 6 edn. ICE Publishing, London.##
[2]. McNally, T. (2011). Polymer modified bitumen: Properties and characterisation, Elsevier, doi.org/10.1533/9780857093721.1. ##
[3]. Costa, L., Silva, H. M., Oliveira, J. R., & Fernandes, S. R. (2013). Incorporation of waste plastic in asphalt binders to improve their performance in the pavement, International Journal of Pavement Research & Technology, 6(4), doi:10.6135/ijprt.org.tw/2013, 6(4).457. ##
[4]. Fernandes, S. R., Silva, H. M., & Oliveira, J. R. (2018). Recycled stone mastic asphalt mixtures incorporating high rates of waste materials. Construction and Building Materials, 187, 1-13, doi.org/10.1016/j.conbuildmat.2018.07.157. ##
[5]. Cao, X., Wang, H., Cao, X., Sun, W., Zhu, H., & Tang, B. (2018). Investigation of rheological and chemical properties asphalt binder rejuvenated with waste vegetable oil, Construction and Building Materials, 180, 455-463, doi.org/10.1016/j.conbuildmat.2018.06.001. ##
[6]. Hong, W., Mo, L., Pan, C., Riara, M., Wei, M., & Zhang, J. (2020). Investigation of rejuvenation and modification of aged asphalt binders by using aromatic oil-SBS polymer blend, Construction and Building Materials, 231, 117154, doi.org/10.1016/j.conbuildmat.2019.117154. ##
[7]. Rossi, C. O., Caputo, P., Loise, V., Miriello, D., Teltayev, B., & Angelico, R. (2017). Role of a food grade additive in the high temperature performance of modified bitumens, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 532, 618-624, doi.org/10.1016/j.colsurfa.2017.01.025. ##
[8]. Köfteci, S., Ahmedzade, P., & Kultayev, B. (2014). Performance evaluation of bitumen modified by various types of waste plastics, Construction and Building Materials, 73, 592-602, doi.org/10.1016/j.conbuildmat.2014.09.067.
[9]. غفارپور جهرمی. (2014). اصلاح خصوصیات قیر با نانورس. پژوهش نفت، 24(78)، 92-105،10.22078/ doi: pr.2014.379.. ##
[10]. DeRousseau, M. A., Kasprzyk, J. R., & Srubar Iii, W. V. (2018). Computational design optimization of concrete mixtures: A review, Cement and Concrete Research, 109, 42-53, doi.org/10.1016/j.cemconres.2018.04.007. ##
[11]. Hamzah, M. O., Golchin, B., & Tye, C. T. (2013). Determination of the optimum binder content of warm mix asphalt incorporating Rediset using response surface method, Construction and Building Materials, 47, 1328-1336, doi.org/10.1016/j.conbuildmat.2013.06.023. ##
[12]. Jeirani, Z., Jan, B. M., Ali, B. S., Noor, I. M., Hwa, S. C., & Saphanuchart, W. (2012). The optimal mixture design of experiments: Alternative method in optimizing the aqueous phase composition of a microemulsion, Chemometrics and Intelligent Laboratory Systems, 112, 1-7, doi.org/10.1016/j.chemolab.2011.10.008. ##
[13]. Varanda, C., Portugal, I., Ribeiro, J., Silva, A. M., & Silva, C. M. (2017). Optimization of bitumen formulations using mixture design of experiments (MDOE). Construction and Building Materials, 156, 611-620, doi.org/10.1016/j.conbuildmat.2017.08.146. ##
[15]. Wigena, A. H., Soleh, A. M., & Syafitri, U. D. (2019, October). Algorithms for i-optimal designs for ordinal response: a literature approach, In Journal of Physics: Conference Series, 1317(1), 012001, IOP Publishing, doi: 10.1088/1742-6596/1317/1/012001. ##
[16]. Li, Y., & Deng, X. (2021). An efficient algorithm for Elastic I‐optimal design of generalized linear models, Canadian Journal of Statistics, 49(2), 438-470, doi.org/10.1002/cjs.11571. ##
[17]. Azadikhah, K., Davallo, M., Kiarostami, V., & Mortazavinik, S. (2022). Modeling of malachite green adsorption onto novel polyurethane/SrFe12O19/clinoptilolite nanocomposite using response surface methodology and biogeography-based optimization-assisted multilayer neural network, Environmental Science and Pollution Research, 29(24), 36040-36056. ##
[18]. Farajvand, M., Kiarostami, V., Davallo, M., Ghaedi, A., & Fatahi, F. (2019). Rapid extraction of copper ions in water, tea, milk and apple juice by solvent-terminated dispersive liquid–liquid microextraction using p-sulfonatocalix (4) arene: optimization by artificial neural networks coupled bat inspired algorithm and response surface methodology, Journal of food science and technology, 56, 4224-4232. ##
[19]. Farajvand, M., Kiarostami, V., Davallo, M., & Ghaedi, A. (2019). Simultaneous extraction of Cu 2+ and Cd 2+ ions in water, wastewater, and food samples using solvent-terminated dispersive liquid–liquid microextraction: optimization by multiobjective evolutionary algorithm based on decomposition, Environmental Monitoring and Assessment, 191, 1-12. ##
[20]. Farajvand, M., Kiarostami, V., Davallo, M., & Ghaedi, A. (2018). Optimization of solvent terminated dispersive liquid–liquid microextraction of copper ions in water and food samples using artificial neural networks coupled bees algorithm, Bulletin of Environmental Contamination and Toxicology, 100, 402-408. ##
[21]. Ebrahimpoor, S., Kiarostami, V., Khosravi, M., Davallo, M., & Ghaedi, A. (2021). Optimization of tartrazineadsorption onto polypyrrole/srfe12o19/graphene oxide nanocomposite using central composite design and bat inspired algorithm with the aid of artificial neural networks, Fibers and Polymers, 22, 159-170. ##
[22]. Ebrahimpoor, S., Kiarostami, V., Khosravi, M., Davallo, M., & Ghaedi, A. (2019). Bees metaheuristic algorithm with the aid of artificial neural networks for optimization of acid red 27 dye adsorption onto novel polypyrrole/SrFe12O19/graphene oxide nanocomposite, Polymer Bulletin, 76, 6529-6553. ##
[23]. Ghaedi, A. M., Karamipour, S., Vafaei, A., Baneshi, M. M., & Kiarostami, V. (2019). Optimization and modeling of simultaneous ultrasound-assisted adsorption of ternary dyes using copper oxide nanoparticles immobilized on activated carbon using response surface methodology and artificial neural network. Ultrasonics sonochemistry, 51, 264-280, doi.org/10.1016/j.ultsonch.2018.10.007. ##
[24]. Vafaei, A., Ghaedi, A. M., Avazzadeh, Z., Kiarostami, V., Agarwal, S., & Gupta, V. K. (2021). Removal of hydrochlorothiazide from molecular liquids using carbon nanotubes: Radial basis function neural network modeling and culture algorithm optimization, Journal of Molecular Liquids, 324, 114766, doi.org/10.1016/j.molliq.2020.114766. ##
[25]. Jun, L., Yuxia, Z., & Yuzhen, Z. (2008). The research of GMA-g-LDPE modified Qinhuangdao bitumen, Construction and Building Materials, 22(6), 1067-1073, doi.org/10.1016/j.conbuildmat.2007.03.007. ##
[26]. Lu, X., Isacsson, U., & Ekblad, J. (1998). Low-temperature properties of styrene–butadiene–styrene polymer modified bitumens. Construction and Building Materials, 12(8), 405-414, doi.org/10.1016/S0950-0618(98)00032-4. ##
[27]. Brasileiro, L. L., Moreno-Navarro, F., Martínez, R. T., del Sol-Sánchez, M., Matos, J. M. E., & del Carmen Rubio-Gámez, M. (2019). Study of the feasability of producing modified asphalt bitumens using flakes made from recycled polymers, Construction and Building Materials, 208, 269-282, doi.org/10.1016/j.conbuildmat.2019.02.095. ##
[28]. Behnood, A., & Olek, J. (2017). Rheological properties of asphalt binders modified with styrene-butadiene-styrene (SBS), ground tire rubber (GTR), or polyphosphoric acid (PPA). Construction and Building Materials, 151, 464-478, doi.org/10.1016/j.conbuildmat.2017.06.115. ##
[29]. Aydemir, E. B., & Ozkul, M. H. (2020). Investigation of effect of bitumen chemical composition, elastomeric polymer and paraffin wax additives on the properties of bitumen by using response surface method. Construction and Building Materials, 234, 117414, doi.org/10.1016/j.conbuildmat.2019.117414. ##
[30]. Pyshyev, S., Gunka, V., Grytsenko, Y., Shved, M., & Kochubei, V. (2017). Oil and gas processing products to obtain polymers modified bitumen, International Journal of Pavement Research and Technology, 10(4), 289-296, doi.org/10.1016/j.ijprt.2017.05.001. ##