[1]. Robelius, F. (2007). Giant oil fields-the highway to oil: GIant oil fields and their importance for future oil production (Doctoral dissertation, Acta Universitatis Upsaliensis).##
[2]. Adopted, I. P. C. C. (2014). Climate change 2014 synthesis report, IPCC: Geneva, Szwitzerland, 1059-1072. ##
[3]. Melzer, L. S. (2012). Carbon dioxide enhanced oil recovery (CO2 EOR): Factors involved in adding carbon capture, utilization and storage (CCUS) to enhanced oil recovery, Center for Climate and Energy Solutions, 1-17. ##
[4]. Abedini, A., & Torabi, F. (2014). On the CO2 storage potential of cyclic CO2 injection process for enhanced oil recovery, Fuel, 124, 14-27. ##
[5]. Roefs, P., Moretti, M., Welkenhuysen, K., Piessens, K., & Compernolle, T. (2019). CO2-enhanced oil recovery and CO2 capture and storage: An environmental economic trade-off analysis, Journal of environmental management, 239, 167-177, doi.org/10.1016/j.jenvman.2019.03.007. ##
[6]. Lindeberg, E., Grimstad, A. A., Bergmo, P., Wessel-Berg, D., Torsæter, M., & Holt, T. (2017). Large scale tertiary CO2 EOR in mature water flooded Norwegian oil fields, Energy Procedia, 114, 7096-7106, doi.org/10.1016/j.egypro.2017.03.1851. ##
[7]. Ramanathan, R., Shehata, A. M., & Nasr-El-Din, H. A. (2015, October). Water Alternating CO2 Injection Process-Does Modifying the Salinity of Injected Brine Improve Oil Recovery?, In Offshore Technology Conference Brasil, D031S030R003, OTC, doi.org/10.4043/26253-MS. ##
[8]. Ghedan, S. (2009, October). Global laboratory experience of CO2-EOR flooding. In SPE/EAGE reservoir characterization & simulation conference, cp-170, European Association of Geoscientists & Engineers, doi.org/10.3997/2214-4609-pdb.170.spe125581. ##
[9]. Worthen, A., Taghavy, A., Aroonsri, A., Kim, I., Johnston, K., Huh, C., & DiCarlo, D. (2015). Multi-scale Evaluation of Nanoparticle-stabilized CO2-in-water Foams: From the Benchtop to the Field, In SPE Annual Technical Conference and Exhibition?, D011S009R006, SPE, doi.org/10.2118/175065-MS. ##
[10]. Lake LW, Venuto PB. A niche for enhanced oil recovery in the 1990s, Oil & Gas Journal. 1990;88:62-7. ##
[11]. Koval, E. (1963). A method for predicting the performance of unstable miscible displacement in heterogeneous media, Society of Petroleum Engineers Journal, 3(02), 145-154, doi.org/10.2118/450-PA. ##
[12]. Lee, H. O., & Heller, J. P. (1990). Laboratory measurements of CO2-foam mobility. SPE Reservoir Engineering, 5(02), 193-197, doi.org/10.2118/17363-PA. ##
[13]. AlQuraishi, A. A., Amao, A. M., Al-Zahrani, N. I., AlQarni, M. T., & AlShamrani, S. A. (2019). Low salinity water and CO2 miscible flooding in Berea and Bentheimer sandstones, Journal of king saud university-engineering sciences, 31(3), 286-295, doi.org/10.1016/j.jksues.2017.04.001. ##
[14]. Massarweh, O., & Abushaikha, A. S. (2022). A review of recent developments in CO2 mobility control in enhanced oil recovery, Petroleum, 8(3), 291-317, doi.org/10.1016/j.petlm.2021.05.002. ##
[15]. Nik Salwani, M. A., Rosli, N. R., Tengku Mohd, T. A., Tan, H. L., & Bakar, N. F. A. (2019). Diffusion coefficient and interfacial tension with addition of silica nanoparticles in CO2-surfactant-water-hexane for enhanced oil recovery (EOR) using molecular dynamic simulation, Key Engineering Materials, 797, 375-384, doi.org/10.4028/www.scientific.net/KEM.797.375. ##
[16]. Ren, G., Nguyen, Q. P., & Lau, H. C. (2018). Laboratory investigation of oil recovery by CO2 foam in a fractured carbonate reservoir using CO2-Soluble surfactants, Journal of Petroleum Science and Engineering, 169, 277-296, doi.org/10.1016/j.petrol.2018.04.053. ##
[17]. Binks, B. P., Campbell, S., Mashinchi, S., & Piatko, M. P. (2015). Dispersion behavior and aqueous foams in mixtures of a vesicle-forming surfactant and edible nanoparticles, Langmuir, 31(10), 2967-2978, doi.org/10.1021/la504761x. ##
[18]. Yan, W., Miller, C. A., & Hirasaki, G. J. (2006). Foam sweep in fractures for enhanced oil recovery, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 282, 348-359, doi.org/10.1016/j.colsurfa.2006.02.067. ##
[19] Sun, L., Li, D., Zhao, F., Zhang, X., Wang, D., & Tang, X. (2019). Experimental study of foam flooding in low permeability sandstones: effects of rock permeability and microscopic heterogeneity, Journal of Petroleum Science and Technology, 9(1), 73, doi:10.22078/jpst.2018.3142.1504. ##
[20]. Sæle, A. M., Graue, A., & Alcorn, Z. P. (2022). Unsteady-state CO2 foam injection for increasing enhanced oil recovery and carbon storage potential, doi: 10.46690/ager.2022.06.04. ##
[21]. Chen, Y., Elhag, A. S., Poon, B. M., Cui, L., Ma, K., Liao, S. Y., & Johnston, K. P. (2014). Switchable nonionic to cationic ethoxylated amine surfactants for CO2 enhanced oil recovery in high-temperature, High-salinity Carbonate Reservoirs, SPE journal, 19(02), 249-259. ##
[22]. Elhag, A. S., Chen, Y., Reddy, P. P., Noguera, J. A., Ou, A. M., Hirasaki, G. J., & Johnston, K. P. (2014). Switchable diamine surfactants for CO2 mobility control in enhanced oil recovery and sequestration, Energy Procedia, 63, 7709-7716, doi.org/10.1016/j.egypro.2014.11.804. ##
[23]. Jian, G., Puerto, M. C., Wehowsky, A., Dong, P., Johnston, K. P., Hirasaki, G. J., & Biswal, S. L. (2016). Static adsorption of an ethoxylated nonionic surfactant on carbonate minerals, Langmuir, 32(40), 10244-10252, doi.org/10.1021/acs.langmuir.6b01975. ##
[24]. Zeng, Y., Farajzadeh, R., Eftekhari, A. A., Vincent-Bonnieu, S., Muthuswamy, A., Rossen, W. R., & Biswal, S. L. (2016). Role of gas type on foam transport in porous media, Langmuir, 32(25), 6239-6245, doi.org/10.1021/acs.langmuir.6b00949. ##
[25]. Haugen, A., Fernø, M. A., Graue, A., & Bertin, H. J. (2012). Experimental study of foam flow in fractured oil-wet limestone for enhanced oil recovery, SPE Reservoir Evaluation & Engineering, 15(02), 218-228, doi.org/10.2118/129763-PA. ##
[26]. Farajzadeh, R., Lotfollahi, M., Eftekhari, A. A., Rossen, W. R., & Hirasaki, G. J. H. (2015). Effect of permeability on implicit-texture foam model parameters and the limiting capillary pressure, Energy & fuels, 29(5), 3011-3018, doi.org/10.1021/acs.energyfuels.5b00248. ##
[27]. Abe, M., Schechter, D., Schechter, R. S., Wade, W. H., Weerasooriya, U., & Yiv, S. (1986). Microemulsion formation with branched tail polyoxyethylene sulfonate surfactants, Journal of Colloid and Interface Science, 114(2), 342-356, doi.org/10.1016/0021-9797(86)90420-0. ##
[28]. Barnes, J. R., Dirkzwager, H., Smit, J. R., Smit, J. P., On, A., Navarrete, R. C., & Buijse, M. A. (2010). Application of internal olefin sulfonates and other surfactants to EOR. Part 1: Structure-Performance relationships for selection at different reservoir conditions, In SPE Improved Oil Recovery Symposium, OnePetro, doi.org/10.2118/129766-MS. ##
[29]. Levitt, D. B., Jackson, A. C., Heinson, C., Britton, L. N., Malik, T., Dwarakanath, V., & Pope, G. A. (2009). Identification and evaluation of high-performance EOR surfactants, SPE Reservoir Evaluation & Engineering, 12(02), 243-253, doi.org/10.2118/100089-PA. ##
[30]. Rosen, M. J., & Kunjappu, J. T. (2012). Surfactants and interfacial phenomena, John Wiley & Sons. ##
[31]. Li, R. F., Hirasaki, G. J., Miller, C. A., & Masalmeh, S. K. (2012). Wettability alteration and foam mobility control in a layered, 2D heterogeneous sandpack, SPE journal, 17(04), 1207-1220, doi.org/10.2118/141462-PA. ##
[32]. Bourrel, M., & Chambu, C. (1983). The rules for achieving high solubilization of brine and oil by amphiphilic molecules, Society of Petroleum Engineers Journal, 23(02), 327-338, doi.org/10.2118/10676-PA. ##
[33]. Lu, J., Liyanage, P. J., Solairaj, S., Adkins, S., Arachchilage, G. P., Kim, D. H., & Pope, G. A. (2014). New surfactant developments for chemical enhanced oil recovery, Journal of Petroleum Science and Engineering, 120, 94-101, doi.org/10.1016/j.petrol.2014.05.021. ##
[34]. Bello, A., Ivanova, A., & Cheremisin, A. (2023). A comprehensive review of the role of CO2 foam EOR inthe reduction of carbon footprint in the petroleum industry, Energies, 16(3), 1167, doi.org/10.3390/en16031167. ##
[35]. Sun, L., Bai, B., Wei, B., Pu, W., Wei, P., Li, D., & Zhang, C. (2019). Recent advances of surfactant-stabilized N2/CO2 foams in enhanced oil recovery. Fuel, 241, 83-93, doi.org/10.1016/j.fuel.2018.12.016. ##
[36]. Guo, H., Zitha, P. L., Faber, R., & Buijse, M. (2012). A novel alkaline/surfactant/foam enhanced oil recovery process, Spe Journal, 17(04), 1186-1195, doi.org/10.2118/145043-PA. ##
[37]. Chevallier, E., Tchamba, O., Chabert, M., Bekri, S., Martin, F., & Gautier, S. (2015). Foams with ultra-low interfacial tensions for an efficient EOR process in fractured reservoirs, In SPE Asia Pacific Enhanced Oil Recovery Conference. OnePetro, doi.org/10.2118/174658-MS. ##
[38]. Nguyen, N., Ren, G., Mateen, K., Cordelier, P. R., Morel, D. C., & Nguyen, Q. P. (2015, August). Low-tension gas (LTG) injection strategy in high salinity and high temperature sandstone reservoirs, In SPE Asia Pacific Enhanced Oil Recovery Conference, D021S010R005, SPE, oi.org/10.2118/174690-MS. ##
[39]. Dong, P., Puerto, M., Jian, G., Ma, K., Mateen, K., Ren, G., ... & Hirasaki, G. (2018). Low-IFT foaming system for enhanced oil recovery in highly heterogeneous/fractured oil-wet carbonate reservoirs. SPE Journal, 23(06), 2243-2259, doi.org/10.2118/184569-PA. ##
[40]. Aroonsri, A., Worthen, A., Hariz, T., Johnston, K., Huh, C., & Bryant, S. (2013, September). Conditions for generating nanoparticle-stabilized CO2 foams in fracture and matrix flow, In SPE Annual Technical Conference and Exhibition?, D021S020R006, Spe, doi.org/10.2118/166319-MS. ##
[41]. Dickson, J. L., Binks, B. P., & Johnston, K. P. (2004). Stabilization of carbon dioxide-in-water emulsions with silica nanoparticles, Langmuir, 20(19), 7976-7983, doi.org/10.1021/la0488102. ##
[42]. Emrani, A. S., & Nasr-El-Din, H. A. (2017). An experimental study of nanoparticle-polymer-stabilized CO2 foam, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 524, 17-27, doi.org/10.1016/j.colsurfa.2017.04.023. ##
[43]. Mo, D., Yu, J., Liu, N., & Lee, R. (2012, October). Study of the effect of different factors on nanoparticle-stablized CO2 foam for mobility control, In SPE Annual Technical Conference and Exhibition, OnePetro, doi.org/10.2118/159282-MS. ##
[44]. Mohd, T. A. T., Shukor, M. A. A., Ghazali, N. A., Alias, N., Yahya, E., Azizi, A., & Ramlee, N. A. (2014). Relationship between foamability and nanoparticle concentration of carbon dioxide (CO2) foam for enhanced oil recovery (EOR), Applied Mechanics and Materials, 548, 67-71, doi.org/10.4028/www.scientific.net/AMM.548-549.67. ##
[45]. Singh, R., & Mohanty, K. K. (2020). Study of nanoparticle-stabilized foams in harsh reservoir conditions. Transport in Porous Media, 131, 135-155. ##
[46]. Yekeen, N., Manan, M. A., Idris, A. K., Padmanabhan, E., Junin, R., Samin, A. M., & Oguamah, I. (2018). A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery, Journal of Petroleum Science and Engineering, 164, 43-74, doi.org/10.1016/j.petrol.2018.01.035. ##
[47]. Massarweh, O., & Abushaikha, A. S. (2022). A review of recent developments in CO2 mobility control in enhanced oil recovery. Petroleum, 8(3), 291-317, doi.org/10.1016/j.petlm.2021.05.002. ##
[48]. Khajehpour, M., Reza Etminan, S., Goldman, J., Wassmuth, F., & Bryant, S. (2018). Nanoparticles as foam stabilizer for steam-foam process, SPE Journal, 23(06), 2232-2242, doi.org/10.2118/179826-PA. ##
[49]. Li, S., Li, Z., & Wang, P. (2016). Experimental study of the stabilization of CO2 foam by sodium dodecyl sulfate and hydrophobic nanoparticles, Industrial & Engineering Chemistry Research, 55(5), 1243-1253, doi.org/10.1021/acs.iecr.5b04443. ##
[50]. Yu, J., An, C., Mo, D., Liu, N., & Lee, R. (2012). Study of adsorption and transportation behavior of nanoparticles in three different porous media. In SPE Improved Oil Recovery Conference?, SPE-153337, doi.org/10.2118/153337-MS. ##
[51]. Sakthivel, S., Adebayo, A., & Kanj, M. Y. (2019). Experimental evaluation of carbon dots stabilized foam for enhanced oil recovery, Energy & Fuels, 33(10), 9629-9643, doi.org/10.1021/acs.energyfuels.9b02235. ##
[52]. Arab, D., Kantzas, A., & Bryant, S. L. (2018). Nanoparticle stabilized oil in water emulsions: A critical review, Journal of Petroleum Science and Engineering, 163, 217-242, doi.org/10.1016/j.petrol.2017.12.091. ##
[53]. Isah, A., Arif, M., Hassan, A., Mahmoud, M., & Iglauer, S. (2022). Fluid–rock interactions and its implications on EOR: Critical analysis, Experimental Techniques and Knowledge Gaps, Energy Reports, 8, 6355-6395, doi.org/10.1016/j.egyr.2022.04.071. ##
[54]. Zhao, G., Dai, C., Zhang, Y., Chen, A., Yan, Z., & Zhao, M. (2015). Enhanced foam stability by adding comb polymer gel for in-depth profile control in high temperature reservoirs, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 115-124, doi.org/10.1016/j.colsurfa.2015.04.041. ##
[55]. AlSumaiti, A. M., Hashmet, M. R., AlAmeri, W. S., & Anto-Darkwah, E. (2018). Laboratory study of CO2 foam flooding in high temperature, High Salinity Carbonate Reservoirs Using Co-injection Technique, Energy & Fuels, 32(2), 1416-1422, doi.org/10.1021/acs.energyfuels.7b03432. ##
[56]. Føyen, T., Alcorn, Z. P., Fernø, M. A., Barrabino, A., & Holt, T. (2021). CO2 mobility reduction using foam stabilized by CO2-and water-soluble surfactants. Journal of Petroleum Science and Engineering, 196, 107651, doi.org/10.1016/j.petrol.2020.107651. ##
[57]. Worthen, A. J., Parikh, P. S., Chen, Y., Bryant, S. L., Huh, C., & Johnston, K. P. (2014). Carbon dioxide-in-water foams stabilized with a mixture of nanoparticles and surfactant for CO2 storage and utilization applications, Energy Procedia, 63, 7929-7938, doi.org/10.1016/j.egypro.2014.11.827. ##
[58]. Sheng JJ. (2015). Status of surfactant EOR technology, Petroleum, 1:97-105, doi.org/10.1016/j.petlm.2015.07.003.
[59]. Basheva, E. S., Ganchev, D., Denkov, N. D., Kasuga, K., Satoh, N., & Tsujii, K. (2000). Role of betaine as foam booster in the presence of silicone oil drops, Langmuir, 16(3), 1000-1013, doi.org/10.1021/la990777+. ##
[60]. Jones, S. A., Kahrobaei, S., Van Wageningen, N., & Farajzadeh, R. (2022). CO2 foam behavior in carbonate rock: Effect of surfactant type and concentration, Industrial & Engineering Chemistry Research, 61(32), 11977-11987, doi.org/10.1021/acs.iecr.2c01186. ##
[61]. Majeed, T., Sølling, T. I., & Kamal, M. S. (2020). Foamstability: The interplay between salt-, surfactant-and critical micelle concentration, Journal of Petroleum Science and Engineering, 187, 106871, doi.org/10.1016/j.petrol.2019.106871. ##