[1]. Fitch, P. J., Lovell, M. A., Davies, S. J., Pritchard, T., & Harvey, P. K. (2015). An integrated and quantitative approach to petrophysical heterogeneity. Marine and Petroleum Geology, 63, 82-96. DOI: 10.1016/j.marpetgeo.2015.02.014. ##
[2]. Nurmi, R., Charara, M., Waterhouse, M., & Park, R. (1990). Heterogeneities in carbonate reservoirs: detection and analysis using borehole electrical imagery. Geological Society, London, Special Publications, 48(1), 95-111. DOI: 10.1144/GSL.SP.1990.048.01.09. ##
[3]. Tavakoli, V. (2019). Carbonate reservoir heterogeneity: overcoming the challenges, Springer Nature. ##
[4]. Akbar, M., Vissapragada, B., Alghamdi, A. H., Allen, D., Herron, M., Carnegie, A., & Saxena, K. (2000). A snapshot of carbonate reservoir evaluation, Oilfield review, 12(4), 20-21. ##
[5]. Cerepi, A., Barde, J. P., & Labat, N. (2003). High-resolution characterization and integrated study of a reservoir formation: the danian carbonate platform in the Aquitaine Basin (France). Marine and Petroleum Geology, 20(10), 1161-1183. DOI: 0.1016/j.marpetgeo.2003.09.005. ##
[6]. Elkateb, T., Chalaturnyk, R., & Robertson, P. K. (2003). An overview of soil heterogeneity: quantification and implications on geotechnical field problems. Canadian Geotechnical Journal, 40(1), 1-15. DOI: 10.1139/t02-090. ##
[7]. Ahr, W. M. (2011). Geology of carbonate reservoirs: the identification, description and characterization of hydrocarbon reservoirs in carbonate rocks. John Wiley & Sons. ##
[8]. Fitch, P. J. R. (2011). Heterogeneity in the petrophysical properties of carbonate reservoirs (Doctoral dissertation, University of Leicester). ##
[9]. Weber, K. J. (1986). How heterogeneity affects oil recovery. Reservoir characterization, 487-544. ##
[10]. Zhengquan, W., Qingeheng, W., Yandong, Z. (1997). Quantification of spatial heterogeneity in Old Growth Forests of Korean Pine. Journal of Forestry Research. 8. 65-69. DOI: 10.1007/BF02864969. ##
[11]. Li, H., & Reynolds, J. F. (1995). On definition and quantification of heterogeneity. Oikos, 280-284, doi: 10.2307/3545921. ##
[12]. Amaefule, J. O., Altunbay, M., Tiab, D., Kersey, D. G., & Keelan, D. K. (1993). Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells, In SPE Annual Technical Conference and Exhibition, OnePetro, doi: 10.2118/26436-MS. ##
[13]. Kolodzie, S. (1980). Analysis of pore throat size and use of the Waxman-Smits equation to determine OOIP in Spindle Field, Colorado, In SPE Annual Technical Conference and Exhibition, OnePetro, doi: 10.2118/9382-MS. ##
[14]. Lucia, F. J. (1995). Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization, AAPG bulletin, 79(9), 1275-1300, doi: 10.1306/7834D4A4-1721-11D7-8645000102C1865D. ##
[15]. Lucia, F. J., & Conti, R. D. (1987). Rock fabric, permeability, and log relationships in an upward-shoaling, vuggy carbonate sequence. ##
[16]. Pranter, M. J., Hirstius, C. B., & Budd, D. A. (2005). Scales of lateral petrophysical heterogeneity in dolomite lithofacies as determined from outcrop analogs: Implications for 3-D reservoir modeling, AAPG bulletin, 89(5), 645-662, doi: 10.1306/11300404049. ##
[17]. Westphal, H., Eberli, G. P., Smith, L. B., Grammer, G. M., & Kislak, J. (2004). Reservoir characterization of the Mississippian Madison formation, Wind river basin, Wyoming. AAPG bulletin, 88(4), 405-432, doi:
10.1306/12020301029. ##
[18]. Jennings, J. W., & Lucia, F. J. (2003). Predicting permeability from well logs in carbonates with a link to geology for interwell permeability mapping. SPE Reservoir Evaluation & Engineering, 6(04), 215-225, doi: 10.2118/84942-PA. ##
[19]. Frykman, P., & Duetsch, C. V. (2002). Practical application of geostatistical scaling laws for data integration, Petrophysics-Houston-, 43(3), 153-171. ##
[20]. Sokal, R. R., & Rohlf, F. J. (2012). Biometry, fourth ed. W. H, Freeman and Company, New York. ##
[21]. Aali, J., Rahimpour-Bonab, H., & Kamali, M. R. (2006). Geochemistry and origin of the world's largest gas field from Persian Gulf, Iran, Journal of Petroleum Science and Engineering, 50(3-4), 161-175, doi: 10.1016/j.petrol.2005.12.004. ##
[22]. Nairn, A. E. M., & Alsharhan, A. S. (1997). Sedimentary basins and petroleum geology of the Middle East, Elsevier. ##
[23]. Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., Heward, A. P., & Simmons, M. D. (2001). Arabian plate sequence stratigraphy, GeoArabia Spec. Publ, Bahrain: Gulf Petrolink, 2, 374. ##
[24]. Naderi-Khujin, M., Seyrafian, A., Vaziri-Moghaddam, H., & Tavakoli, V. (2016). A record of global change: OAE 1a in Dariyan shallow-water platform carbonates, southern Tethys, Persian Gulf, Iran, Facies, 62, 1-19. doi: 10.1007/s10347-016-0476-6. ##
[25]. Schroeder, R., van Buchem, F. S., Cherchi, A., Baghbani, D., Vincent, B., Immenhauser, A., & Granier, B. (2010). Revised orbitolinid biostratigraphic zonation for the Barremian–Aptian of the eastern Arabian Plate and implications for regional stratigraphic correlations, ISBN Electronic, 9781733475754. ##
[26]. Naderi-Khujin, M., Tavakoli, V., Seyrafian, A., & Vaziri-Moghaddam, H. (2020). How a mud-dominated ramp changed to a carbonate–clastic oil reservoir: Sea-level fluctuations in cretaceous of the central Persian Gulf. Marine and Petroleum Geology, 116, 104301, doi: 10.1016/j.marpetgeo.2020.104301. ##
[27]. Dickson, J. A. D. (1965). A modified staining technique for carbonates in thin section. Nature, 205(4971), 587-587, doi: 10.1038/205587a0. ##
[28]. Dunham, R. J. (1962). Classification of carbonate rocks according to depositional textures. ##
[29]. Embry, A. F., & Klovan, J. E. (1971). A late Devonian reef tract on northeastern Banks Island, NWT, Bulletin of Canadian petroleum geology, 19(4), 730-781, doi: 10.35767/gscpgbull.19.4.730. ##
[30]. Vincent, B., van Buchem, F. S., Bulot, L. G., Jalali, M., Swennen, R., Hosseini, A. S., & Baghbani, D. (2015). Depositional sequences, diagenesis and structural control of the Albian to Turonian carbonate platform systems in coastal Fars (SW Iran). Marine and Petroleum Geology, 63, 46-67, doi: 10.1016/j.marpetgeo.2015.02.018. ##
[31]. van Buchem, F. S., Al-Husseini, M. I., Maurer, F., Droste, H. J., & Yose, L. A. (2010). Sequence-stratigraphic synthesis of the Barremian–Aptian of the eastern Arabian Plate and implications for the petroleum habitat. ##
[32]. Rameil, N., Immenhauser, A., Warrlich, G., Hillgaertner, H., & Droste, H. J. (2010). Morphological patterns of Aptian Lithocodium–Bacinella geobodies: relation to environment and scale, Sedimentology, 57(3), 883-911. DOI: 10.1111/j.1365-3091.2009.01124.x. ##
[33]. Haghighi, A. S., & Sahraeyan, M. (2014). Facies analysis and diagenetic features of the Aptian Dariyan Formation in Zagros Fold–Thrust Belt, SW Iran, Journal of African Earth Sciences, 100, 598-613, doi: 10.1016/j.jafrearsci.2014.08.009. ##
[34]. Tucker, M., & Wright, V. (1990). Carbonate Sedimentology. ed. Blackwell Science Ltd, Oxford. ##
[35]. Hollis, C. (2011). Diagenetic controls on reservoir properties of carbonate successions within the Albian–Turonian of the Arabian Plate. Petroleum Geoscience, 17(3), 223-241, doi: 10.1144/1354-079310-032. ##
[36]. Fitch, P. J. (2011). Heterogeneity in the petrophysical properties of carbonate reservoirs, Doctoral dissertation, University of Leicester, 1-265. ##
[37]. Kadkhodaie, R. (2021). Study of rock types and diagenetic facies based on velocity deviation log for unraveling the reservoir heterogeneity in a mixed siliciclastic-carbonate reservoir, Southwest of Iran, Journal of Petroleum Science and Technology, 11(2), 43-52, doi: 10.22078/JPST.2021.4621.1760. ##
[38]. شجاعیپور مع، رشیدی ف، دبیر ب، امیرسرداری م (1400) بررسی سناریوهای تزریق فوم برای کنترل نسبت گاز به نفت در مخازن کربناته با ناهمگنی تراوایی: شبیهسازی فرآیند در یک بخش از مخزن نفتی. پژوهش نفت، 3-14، 31 (1400-4)، doi: 10.22078/PR.2021.4425.3001.
[39]. حسینزاده ب، آیتاللهی ش، رستمی ب، بازارگان م (1397) مدلسازی اثر منحرفکنندهها در اسیدکاری مخازن ناهمگن کربناته در سیستم شعاعی. پژوهش نفت، 1-4، 28 (97-5)، doi: 10.22078/PR.2018.3148.2462.. ##
[40]. حسینزاده م، و توکلی و (1401) تأثیر پارامترهای زمینشناسی بر نسبت تراوایی افقی به عمودی در مخازن کربناته سازندهای کنگان و دالان بالایی. پژوهش نفت، 32 (1401-2)، doi: 10.22078/pr.2022.4465.3020. ##
[41]. Tavakoli, V., & Jamalian, A. (2018). Microporosity evolution in Iranian reservoirs, Dalan and Dariyan formations, the central Persian Gulf, Journal of Natural Gas Science and Engineering, 52, 155-165. DOI: 10.1016/j.jngse.2018.01.028. ##
[42]. Ellis, D. V., & Singer, J. M. (2007). Well logging for earth scientists, 692, Dordrecht: Springer. ##
[43]. Kupecz, J. A., Gluyas, J., & Bloch, S. (1997). Reservoir quality prediction in sandstones and carbonates: An overview. ##
[44]. Hosseini, M., Tavakoli, V., & Nazemi, M. (2018). The effect of heterogeneity on NMR derived capillary pressure curves, case study of Dariyan tight carbonate reservoir in the central Persian Gulf. Journal of Petroleum Science and Engineering, 171, 1113-1122. doi: 10.1016/j.petrol.2018.08.054.##
[45]. Tavakoli, V., Hassani, D., Rahimpour-Bonab, H., & Mondak, A. (2022). How petrophysical heterogeneity controls the saturation calculations in carbonates, the Barremian–Aptian of the central Persian Gulf, Journal of Petroleum Science and Engineering, 208, 109568, doi: 10.1016/j.petrol.2021.109568.