[1]. Shin, S., Yang, H., Sakanishi, K., Mochida, I., Grudoski, D. A., & Shinn, J. H. (2001). Inhibition and deactivation in staged hydrodenitrogenation and hydrodesulfurization of medium cycle oil over NiMoS/Al2O3 catalyst. Applied Catalysis A: General, 205(1-2), 101-108, doi.org/10.1016/S0926-860X (00)00541-X.##
[2]. Anisimov, A. V., & Tarakanova, A. V. (2009). Oxidative desulfurization of hydrocarbon raw materials. Russian Journal of General Chemistry, 79, 1264-1273. ##
[3]. Turaga, U. T., Ma, X., & Song, C. (2003). Influence of nitrogen compounds on deep hydrodesulfurization of 4, 6-dimethyldibenzothiophene over Al2O3-and MCM-41-supported Co-Mo sulfide catalysts, Catalysis Today, 86(1-4), 265-275, doi.org/10.1016/S0920-5861(03)00464-4. ##
[4]. Ismagilov, Z., Yashnik, S., Kerzhentsev, M., Parmon, V., Bourane, A., Al-Shahrani, F. M., & Koseoglu, O. R. (2011). Oxidative desulfurization of hydrocarbon fuels. Catalysis Reviews, 53(3), 199-255. ##
[5]. Akopyan, A. V., Fedorov, R. A., Andreev, B. V., Tarakanova, A. V., Anisimov, A. V., & Karakhanov, E. A. (2018). Oxidative desulfurization of hydrocarbon feedstock, Russian Journal of Applied Chemistry, 91, 529-542. ##
[6]. Chen, T. C., Shen, Y. H., Lee, W. J., Lin, C. C., & Wan, M. W. (2013). An economic analysis of the continuous ultrasound-assisted oxidative desulfurization process applied to oil recovered from waste tires, Journal of cleaner production, 39, 129-136, doi.org/10.1016/j.jclepro.2012.09.001. ##
[7]. Wan, M. W., & Yen, T. F. (2007). Enhance efficiency of tetraoctylammonium fluoride applied to ultrasound-assisted oxidative desulfurization (UAOD) process, Applied Catalysis A: General, 319, 237-245, doi.org/10.1016/j.apcata.2006.12.008. ##
[8]. Mello, P. D. A., Duarte, F. A., Nunes, M. A., Alencar, M. S., Moreira, E. M., Korn, M., & Flores, É. M. (2009). Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock, Ultrasonics sonochemistry, 16(6), 732-736, doi.org/10.1016/j.ultsonch.2009.03.002. ##
[9]. Chen, T. C., Shen, Y. H., Lee, W. J., Lin, C. C., & Wan, M. W. (2010). The study of ultrasound-assisted oxidative desulfurization process applied to the utilization of pyrolysis oil from waste tires, Journal of Cleaner Production, 18(18), 1850-1858, doi.org/10.1016/j.jclepro.2010.07.019. ##
[10]. Song, C., & Ma, X. (2004). Ultra-deep desulfurization of liquid hydrocarbon fuels: Chemistry and process, International Journal of Green Energy, 1(2), 167-191, doi.org/10.1081/GE-120038751. ##
[11]. Babich, I. V., & Moulijn, J. A. (2003). Science and technology of novel processes for deep desulfurization of oil refinery streams: a review, Fuel, 82(6), 607-631, doi.org/10.1016/S0016-2361(02)00324-1. ##
[12]. Seeberger, A., & Jess, A. (2010). Desulfurization of diesel oil by selective oxidation and extraction of sulfurcompounds by ionic liquids—a contribution to a competitive process design. Green Chemistry, 12(4), 602-608, doi.org/10.1039/B918724C. ##
[13]. Mei, H., Mei, B. W., & Yen, T. F. (2003). A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization, Fuel, 82(4), 405-414, doi.org/10.1016/S0016-2361(02)00318-6. ##
[14]. Ali, M. F., Al-Malki, A., El-Ali, B., Martinie, G., & Siddiqui, M. N. (2006). Deep desulphurization of gasoline and diesel fuels using non-hydrogen consuming techniques. Fuel, 85(10-11), 1354-1363, doi.org/10.1016/j.fuel.2005.12.006. ##
[15]. Collins, F. M., Lucy, A. R., & Sharp, C. (1997). Oxidative desulphurisation of oils via hydrogen peroxide and heteropolyanion catalysis. Journal of Molecular Catalysis A: Chemical, 117(1-3), 397-403, doi.org/10.1016/S1381-1169(96)00251-8. ##
[16]. Song, C., & Ma, X. (2003). New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Applied Catalysis B: Environmental, 41(1-2), 207-238, doi.org/10.1016/S0926-3373(02)00212-6. ##
[17]. Dai, Y., Qi, Y., Zhao, D., & Zhang, H. (2008). An oxidative desulfurization method using ultrasound/Fenton's reagent for obtaining low and/or ultra-low sulfur diesel fuel, Fuel Processing Technology, 89(10), 927-932, doi.org/10.1016/j.fuproc.2008.03.009. ##
[18]. Choi, A. E. S., Roces, S., Dugos, N., Futalan, C. M., Lin, S. S., & Wan, M. W. (2014). Optimization of ultrasound-assisted oxidative desulfurization of model sulfur compounds using commercial ferrate (VI). Journal of the Taiwan Institute of Chemical Engineers, 45(6), 2935-2942, doi.org/10.1016/j.jtice.2014.08.003. ##
[19]. Yan-Xiu, L. I. U., Hua, S., & Wen-Chao, Z. H. A. N. G. (2013). Oxidation Desulfurization of Model Sulfur Compound by Potassium Ferrate in the Presence of the Catalyst of Phosphomolybdic Acid, China Petroleum Processing & Petrochemical Technology, 15(1), 61. ##
[20]. Lu, M. C., Biel, L. C. C., Wan, M. W., de Leon, R., & Arco, S. (2014). The oxidative desulfurization of fuels with a transition metal catalyst: a comparative assessment of different mixing techniques, International Journal of Green Energy, 11(8), 833-848, doi.org/10.1080/15435075.2013.830260. ##
[21]. Sachdeva, T. O., & Pant, K. K. (2010). Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst, Fuel Processing Technology, 91(9), 1133-1138, doi.org/10.1016/j.fuproc.2010.03.027. ##
[22]. Tam, P. S., Kittrell, J. R., & Eldridge, J. W. (1990). Desulfurization of fuel oil by oxidation and extraction. 1. Enhancement of extraction oil yield, Industrial & Engineering Chemistry Research, 29(3), 321-324, doi.org/10.1021/ie00099a002. ##
[23]. Matsuzawa, S., Tanaka, J., Sato, S., & Ibusuki, T. (2002). Photocatalytic oxidation of dibenzothiophenes in acetonitrile using TiO2: effect of hydrogen peroxide and ultrasound irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 149(1-3), 183-189, doi.org/10.1016/S1010-6030(02)00004-7. ##
[24]. Zannikos, F., Lois, E., & Stournas, S. (1995). Desulfurization of petroleum fractions by oxidation and solvent extraction, Fuel processing technology, 42(1), 35-45, doi.org/10.1016/0378-3820(94)00104-2. ##
[25]. Te, M., Fairbridge, C., & Ring, Z. (2001). Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems. Applied Catalysis A: General, 219(1-2), 267-280, doi.org/10.1016/S0926-860X (01)00699-8. ##
[26]. Al-Shahrani, F., Xiao, T., Llewellyn, S. A., Barri, S., Jiang, Z., Shi, H., & Green, M. L. (2007). Desulfurization of diesel via the H2O2 oxidation of aromatic sulfides to sulfones using a tungstate catalyst, Applied Catalysis B: Environmental, 73(3-4), 311-316, doi.org/10.1016/j.apcatb.2006.12.016. ##
[27]. Ramírez-Verduzco, L. F., Murrieta-Guevara, F., García-Gutiérrez, J. L., Martín-Castañón, R. S., Martínez-Guerrero, M. D. C., Montiel-Pacheco, M. D. C., & Mata-Díaz, R. (2004). Desulfurization of middle distillates by oxidation and extraction process, Petroleum Science and Technology, 22(1-2), 129-139, doi.org/10.1081/LFT-120028528. ##
[28]. Julião, D., Gomes, A. C., Pillinger, M., Valença, R., Ribeiro, J. C., Gonçalves, I. S., & Balula, S. S. (2018). Desulfurization of liquid fuels by extraction and sulfoxidation using H2O2 and [CpMo (CO) 3R] as catalysts, Applied Catalysis B: Environmental, 230, 177-183, doi.org/10.1016/j.apcatb.2018.02.036. ##
[29]. Chen, L., Ren, J. T., & Yuan, Z. Y. (2022). Increasing the utilization of SiBeta support to anchor dual active sites of transition metal and heteropolyacids for efficient oxidative desulfurization of fuel, Applied Catalysis B: Environmental, 305, 121044, doi.org/10.1016/j.apcatb.2021.121044. ##
[30]. Bryzhin, A. A., Gantman, M. G., Buryak, A. K., & Tarkhanova, I. G. (2019). Brønsted acidic SILP-based catalysts with H3PMo12O40 or H3PW12O40 in the oxidative desulfurization of fuels. Applied Catalysis B: Environmental, 257, 117938, doi.org/10.1016/j.apcatb.2019.117938. ##
[31]. Ghubayra, R., Nuttall, C., Hodgkiss, S., Craven, M., Kozhevnikova, E. F., & Kozhevnikov, I. V. (2019). Oxidative desulfurization of model diesel fuel catalyzed by carbon-supported heteropoly acids, Applied CatalysisB: Environmental, 253, 309-316, doi.org/10.1016/j.apcatb.2019.04.063. ##
[32]. Liu, Q., Zhang, Z., Liu, B., & Xia, H. (2018). Rare earth oxide doping and synthesis of spinel ZnMn2O4/KIT-1 with double gyroidal mesopores for desulfurization nature of hot coal gas. Applied Catalysis B: Environmental, 237, 855-865, doi.org/10.1016/j.apcatb.2018.06.056. ##
[33]. Zhu, Z., Ma, H., Liao, W., Tang, P., Yang, K., Su, T., & Lü, H. (2021). Insight into tri-coordinated aluminum dependent catalytic properties of dealuminated Y zeolites in oxidative desulfurization, Applied Catalysis B: Environmental, 288, 120022, doi.org/10.1016/j.apcatb.2021.120022. ##
[34]. Li, S. W., Wang, W., & Zhao, J. S. (2020). Highly effective oxidative desulfurization with magnetic MOF supported W-MoO3 catalyst under oxygen as oxidant, Applied Catalysis B: Environmental, 277, 119224, doi.org/10.1016/j.apcatb.2020.119224. ##
[35]. Mondol, M. M. H., Bhadra, B. N., & Jhung, S. H. (2021). Molybdenum nitride@ porous carbon, derived from phosphomolybdic acid loaded metal-azolate framework-6: A highly effective catalyst for oxidative desulfurization. Applied Catalysis B: Environmental, 288, 119988, doi.org/10.1016/j.apcatb.2021.119988. ##
[36]. Wang, S., Zhang, X., Chang, X., Zong, M. Y., Fan, C. Z., Guo, D. X., & Bu, X. H. (2021). Rational design of ionic V-MOF with confined Mo species for highly efficient oxidative desulfurization. Applied Catalysis B: Environmental, 298, 120594, doi.org/10.1016/j.apcatb.2021.120594. ##
[37]. Bhadra, B. N., & Jhung, S. H. (2019). Oxidative desulfurization and denitrogenation of fuels using metal-organic framework-based/-derived catalysts, Applied Catalysis B: Environmental, 259, 118021, doi.org/10.1016/j.apcatb.2019.118021. ##
[38]. Zhang, M., Liu, J., Li, H., Wei, Y., Fu, Y., Liao, W., & Li, H. (2020). Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization, Applied Catalysis B: Environmental, 271, 118936, doi.org/10.1016/j.apcatb.2020.118936. ##
[39]. Zhang, M., Liu, J., Li, H., Wei, Y., Fu, Y., Liao, W., & Li, H. (2020). Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization, Applied Catalysis B: Environmental, 271, 118936, doi.org/10.1016/j.apcatb.2020.118936. ##
[40]. Huang, D., Wang, Y. J., Yang, L. M., & Luo, G. S. (2006). Chemical oxidation of dibenzothiophene with a directly combined amphiphilic catalyst for deep desulfurization, Industrial & Engineering Chemistry Research, 45(6), 1880-1885, doi.org/10.1021/ie0513346. ##
[41]. Huang, D., Zhai, Z., Lu, Y. C., Yang, L. M., & Luo, G. S. (2007). Optimization of composition of a directly combined catalyst in dibenzothiophene oxidation for deep desulfurization. Industrial & Engineering Chemistry Research, 46(5), 1447-1451, doi.org/10.1021/ie0611857. ##
[42]. Campos-Martin, J. M., Capel-Sanchez, M. C., & Fierro, J. L. G. (2004). Highly efficient deep desulfurization of fuels by chemical oxidation, Green Chemistry, 6(11), 557-562, doi.org/10.1039/B409882J. ##
[43]. Yu, F., & Wang, R. (2014). Oxidative desulfurization of diesel using organic salt of polyoxometalate as an efficient and recoverable phase-transfer catalyst. Chemistry Letters, 43(6), 834-836, doi.org/10.1246/cl.140132. ##
[44]. Dalaigh C. O, Corr S. A, Ko Y. G and Connon, Angew S. J., 2007; Nanomaterials and Nanochemistry, New Journal of Chemistry, Springer-Verlag, Berlin Heidelberg, 46, 4329–4332. ##
[45]. Polshettiwar, V., & Varma, R. S. (2009). Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number. Organic & biomolecular chemistry, 7(1), 37-40, doi: 10.1039/B817669H. ##
[46]. Zhang, J., Wang, Y., Ji, H., Wei, Y., Wu, N., Zuo, B., & Wang, Q. (2005). Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene, Journal of Catalysis, 229(1), 114-118, doi.org/10.1016/j.jcat.2004.09.029. ##
[47]. Panella, B., Vargas, A., & Baiker, A. (2009). Magnetically separable Pt catalyst for asymmetric hydrogenation, Journal of Catalysis, 261(1), 88-93, doi.org/10.1016/j.jcat.2008.11.002. ##
[48]. Wang, H. B., Zhang, Y. H., Zhang, Y. B., Zhang, F. W., & Niu, J. R. (2012). Design of nanocatalysts supported on magnetic nanocomposites containing silica, ceria and titania Yang, H.-L.; Li, R.; Ma, J.-T., Pd immobilized on thiol-modified magnetic nanoparticles: A complete magnetically recoverable and highly active catalyst for hydrogenation reactions, Solid State Sciences, 14(9), 1256-1262. ##
[49]. Sun, Y., Liu, G., Gu, H., Huang, T., Zhang, Y., & Li, H. (2011). Magnetically recoverable SiO2-coated Fe3O4 nanoparticles: a new platform for asymmetric transfer hydrogenation of aromatic ketones in aqueous medium, Chemical Communications, 47(9), 2583-2585, doi.org/10.1039/C0CC03730C. ##
[50]. Baruwati, B., Guin, D., & Manorama, S. V. (2007). Pd on surface-modified NiFe2O4 nanoparticles: a magnetically recoverable catalyst for Suzuki and Heck reactions, Organic Letters, 9(26), 5377-5380, doi.org/10.1021/ol702064x. ##
[51]. Zhang, F., Jin, J., Zhong, X., Li, S., Niu, J., Li, R., & Ma, J. (2011). Pd immobilized on amine-functionalized magnetite nanoparticles: a novel and highly active catalyst for hydrogenation and Heck reactions, Green Chemistry, 13(5), 1238-1243, doi.org/10.1039/C0GC00854K. ##
[52]. Jung, J. Y., Taher, A., Hossain, S., & Jin, M. J. (2010). Highly active heterogeneous palladium catalyst for the Suzuki reaction of heteroaryl chlorides, Bulletin of the Korean Chemical Society, 31(10), 3010-3012, doi: 10.5012/bkcs.2010.31.10.3010. ##
[53]. Bock, M., Dehn, R., & Kirschning, A. (2008). Total synthesis of thuggacin B, Angewandte Chemie International Edition, 47(47), 9134-9137, doi.org/10.1002/anie.200803271. ##
[54]. Fujita K, Umeki S, Yamazaki M, Ainoya T, Tsuchimoto T and Yasuda H, Fe3O4/SiO2/(CH2)3N+Me3Br3– core–shell nanoparticles: An efficient catalyst for the synthesis of functionalized 5-oxo-hexahydroquinolines, Iranian Journal of Catalysis, 2011, 52, 3137–3140. ##
[55]. E. Dezfoolinezhad, K. Ghodrati and R. Badri, (2018), Polyionene/Br3 Grafted on Magnetic Nanoparticles as an Efficient and Eco-Friendly Catalyst for the Metal Free Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones/Thiones, New Journal of Chemistry. Springer, 40, 4575-4583. ##
[56]. Korani, E., Ghodrati, K., & Asnaashari, M. (2018). Magnetic Core–Shell Nanoparticles Containing I 3− 3- as a Novel Catalyst for the Facile Synthesis of Imidazole, Thiazole and Pyrimidine Derivatives in Solvent-Free Conditions. Silicon, 10, 1433-1441. ##
[57]. Dezfoolinezhad, E., Ghodrati, K., & Badri, R. (2019). Polyionene/Br3 grafted on magnetic nanoparticles as an efficient and Eco-friendly catalyst for the metal free synthesis of 3, 4-Dihydropyrimidin-2 (1H)-Ones/Thiones. Silicon, 11(3), 1593-1609. ##