[1]. Sickafus, K. E., Wills, J. M., & Grimes, N. W. (1999). Structure of spinel, Journal of the American Ceramic Society, 82(12), 3279-3292, doi: 10.1111/j.1151-2916. 1999.tb02241. x.##
[2]. Sharma, P., Das, C., Indris, S., Bergfeldt, T., Mereacre, L., Knapp, M., & Darma, M. S. D. (2020). Synthesis and characterization of a multication doped Mn spinel, LiNi0. 3Cu0. 1Fe0. 2Mn1. 4O4, as 5 V positive electrode material, ACS omega, 5(36), 22861-22873. doi: 10.1021/acsomega.0c02174. ##
[3]. Rashdan, S. A., & Hazeem, L. J. (2020). Synthesis of spinel ferrites nanoparticles and investigating their effect on the growth of microalgae Picochlorum sp. Arab Journal of Basic and Applied Sciences, 27(1), 134-141. doi: 10.1080/25765299.2020.1733174. ##
[4]. Rahmani B, Haghighi M. (2018). Thermochemical synthesis of Mg-Al ceramic spinel as support for MgO/MgAl2O4 nanocatalyst toward conversion of vegetable oil to green fuel, Journal of Petroleum Research, 28(97-5), 59-75. doi: 10.22078/pr.2018.2905.2355. ##
[5]. Kushwaha, A. K., Uğur, Ş., Akbudak, S., & Uğur, G. Ö. K. A. Y. (2017). Investigation of structural, elastic, electronic, optical and vibrational properties of silver chromate spinels: Normal (CrAg2O4) and inverse (Ag2CrO4). Journal of Alloys and Compounds, 704, 101-108, doi: http://dx.doi.org/10.1016/j.jallcom.2017.02.055. ##
[6]. Rahmanivahid, B., Pinilla-de Dios, M., Haghighi, M., & Luque, R. (2019). Mechanochemical synthesis of CuO/MgAl2O4 and MgFe2O4 spinels for vanillin production from isoeugenol and vanillyl alcohol, Molecules, 24(14), 2597, doi.org/10.3390/molecules24142597. ##
[7]. Amani, T., Haghighi, M., & Rahmanivahid, B. (2019). Microwave-assisted combustion design of magnetic Mg–Fe spinel for MgO-based nanocatalyst used in biodiesel production: Influence of heating-approach and fuel ratio. Journal of Industrial and Engineering Chemistry, 80, 43-52, doi: https://doi.org/10.1016/j.jiec.2019.07.029. ##
[8]. Hashemzehi, M., Pirouzfar, V., Nayebzadeh, H., & Su, C. H. (2022). Modelling and optimization of main independent parameters for biodiesel production over a Cu0. 4Zn0. 6Al2O4 catalyst using an RSM method, Journal of Chemical Technology & Biotechnology, 97(1), 111-119, doi: https://doi.org/10.1002/jctb.6916. ##
[9]. Sarvestani, N. S., Fard, M. H. A., Tabasizadeh, M., Nayebzadeh, H., Arora, P., Verma, P., & Brown, R. J. (2022). Synthesis and evaluation of catalytic activity of NiFe2O4 nanoparticles in a diesel engine: An experimental investigation and Multi-Criteria Decision-Making approach, Journal of Cleaner Production, 365, 132818, doi: https://doi.org/10.1016/j.jclepro.2022.132818. ##
[10]. Dehghani, F., Hashemian, S., & Shibani, A. (2017). Effect of calcination temperature for capability of MFe2O4 (M= Co, Ni and Zn) ferrite spinel for adsorption of bromophenol red. Journal of Industrial and Engineering Chemistry, 48, 36-42, doi: http://dx.doi.org/10.1016/j.jiec.2016.11.022. ##
[11]. Ganesh, I. (2011). Fabrication of magnesium aluminate (MgAl2O4) spinel foams, Ceramics International, 37(7), 2237-2245, doi: http://dx.doi.org/10.1016/j.ceramint.2011.03.068. ##
[12]. Villalobos, G. R., Sanghera, J. S., & Aggarwal, I. D. (2005). Degradation of magnesium aluminum spinel by lithium fluoride sintering aid, Journal of the American Ceramic Society, 88(5), 1321-1322, doi: 10.1111/j.1551-2916.2005.00209. x. ##
[13]. Vahid, B. R., & Haghighi, M. (2016). Urea-nitrate combustion synthesis of MgO/MgAl2O4 nanocatalyst used in biodiesel production from sunflower oil: Influence of fuel ratio on catalytic properties and performance, Energy Conversion and Management, 126, 362-372, doi.org/10.1016/j.enconman.2016.07.050. ##
[14]. Alvar, E. N., Rezaei, M., Alvar, H. N., Feyzallahzadeh, H., & Yan, Z. F. (2009). Synthesis of nanocrystalline MgAl2O4 spinel by using ethylene diamine as precipitation agent. Chemical Engineering Communications, 196(11), 1417-1424, doi:10.1080/00986440902939012. ##
[15]. Vahid, B. R., Haghighi, M., Toghiani, J., & Alaei, S. (2018). Hybrid-coprecipitation vs. combustion synthesis of Mg-Al spinel based nanocatalyst for efficient biodiesel production, Energy Conversion and Management, 160, 220-229, doi: https://doi.org/10.1016/j.enconman.2018.01.030. ##
[16]. Hashemzehi, M., Saghatoleslami, N., & Nayebzadeh, H. (2016). A study on the structure and catalytic performance of ZnxCu1− xAl2O4 catalysts synthesized by the solution combustion method for the esterification reaction. Comptes Rendus Chimie, 19(8), 955-962, doi: http://dx.doi.org/10.1016/j.crci.2016.05.006. ##
[17]. Yadav, R. S., Havlica, J., Hnatko, M., Šajgalík, P., Alexander, C., Palou, M., & Enev, V. (2015). Magnetic properties of Co1− xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling. Journal of Magnetism and Magnetic Materials, 378, 190-199, doi: http://dx.doi.org/10.1016/j.jmmm.2014.11.027. ##
[18]. Latifi, S. M., Azghandi, J. B., Salehirad, A., & Parvini, M. (2017). A comparative study on H2S removal using Mg–Al spinel (MgAl2O4) and MgO/Al2O3 nanocomposites, Chinese Journal of Chemical Engineering, 25(9), 1329-1334, doi: http://dx.doi.org/10.1016/j.cjche.2016.12.002. ##
[19]. Zu, Y., Zhao, Y., Xu, K., Tong, Y., & Zhao, F. (2016). Preparation and comparison of catalytic performance for nano MgFe2O4, GO-loaded MgFe2O4 and GO-coated MgFe2O4 nanocomposites, Ceramics International, 42(16), 18844-18850, doi: http://dx.doi.org/10.1016/j.ceramint.2016.09.030. ##
[20]. Shetty, K., Lokesh, S. V., Rangappa, D., Nagaswarupa, H. P., Nagabhushana, H., Anantharaju, K. S., & Sharma, S. C. (2017). Designing MgFe2O4 decorated on green mediated reduced graphene oxide sheets showing photocatalytic performance and luminescence property, Physica B: Condensed Matter, 507, 67-75, doi: http://dx.doi.org/10.1016/j.physb.2016.11.021. ##
[21]. Yousefi S, Haghighi M, Rahmani Vahid B. (2018). Facile and efficient microwave combustion fabrication of Mg-spinel as support for MgO nanocatalyst used in biodiesel production from sunflower oil: Fuel type approach. Chemical Engineering Research and Design, 138, 506-518. doi: https://doi.org/10.1016/j.cherd.2018.09.013. ##
[22]. Yousefi, S., Haghighi, M., & Vahid, B. R. (2018). Facile and efficient microwave combustion fabrication of Mg-spinel as support for MgO nanocatalyst used in biodiesel production from sunflower oil: Fuel type approach. Chemical Engineering Research and Design, 138, 506-518, doi.org/10.1016/j.cherd.2018.09.013. ##
[23]. Meshkani, F., Golesorkh, S. F., Rezaei, M., & Andache, M. (2017). Nickel catalyst supported on mesoporous MgAl2O4 nanopowders synthesized via a homogenous precipitation method for dry reforming reaction. Research on Chemical Intermediates, 43, 545-559, doi: 10.1007/s11164-016-2639-z. ##
[24]. Mosayebi Z, Rezaei M, Hadian N, Kordshuli FZ, Meshkani F. (2012). Low temperature synthesis of nanocrystalline magnesium aluminate with high surface area by surfactant assisted precipitation method: Effect of preparation conditions. Materials Research Bulletin, 47(9), 2154-2160. doi: http://dx.doi.org/10.1016/j.materresbull.2012.06.010. ##
[25]. Mosayebi, Z., Rezaei, M., Hadian, N., Kordshuli, F. Z., & Meshkani, F. (2012). Low temperature synthesis of nanocrystalline magnesium aluminate with high surface area by surfactant assisted precipitation method: Effect of preparation conditions, Materials Research Bulletin, 47(9), 2154-2160, doi.org/10.1016/j.materresbull.2012.06.010. ##
[26]. A.; KRHG, R.; MM, C.; FD, E. CD. (2000). Microwave synthesis of alumina powders. American Ceramic Society bulletin 79, 63-67. ##
[27]. de Moraes, G. G., & Novaes de Oliveira, A. P. (2015). Synthesis of the MgAl2O4 spinel obtained via combustion reaction using glycerine from the biodiesel as a fuel for producing cellular ceramics, In Materials Science Forum, 820, 96-101, Trans Tech Publications Ltd, doi.org/10.4028/www.scientific.net/MSF.820.96. ##
[28]. دلیر خیرالهینژاد، پ.، حقیقی، م.، جدیری، ن. و رحمانی، ف. (2017). سنتز مقایسهای نانوکاتالیست Ni/Z25M75 بهروش تلقیح و سل-ژل جهت استفاده در تبدیل اتان به اتیلن در حضور دیاکسیدکربن و اکسیژن. پژوهش نفت، 27(1-96)، 105-92، doi: .10.22078/pr.2017.1792.1873. ##
[29]. Sharifi, M., Haghighi, M., Rahemi, N. & Rahmani, F. (2017). A comparative synthesis and physicochemical characterizations of Ni/Al2O3 nanocatalyst via sequential impregnation and sol-gel methods used for dry reforming of methane, Journal of Petroleum Research, 27(96-2), 146-159, doi: 10.22078/pr.2017.752. ##
[30]. Jiten, C., Rawat, M., Bhattacharya, A., Singh, K. C. (2017). (Na0.5K0.5) NbO3 nanocrystalline powders produced by high energy ball milling and corresponding ceramics, Materials Research Bulletin, 90, 162-169. doi: http://dx.doi.org/10.1016/j.materresbull.2017.02.031. ##
[31]. Yang, M., Guo, Z., Xiong, J., Liu, F. & Qi, K. (2017). Microstructural changes of (Ti,W)C solid solution induced by ball milling, International Journal of Refractory Metals and Hard Materials, 66, 83-87, doi: http://dx.doi.org/10.1016/j.ijrmhm.2017.03.008. ##
[32]. Badapanda, T., Sarangi, S., Behera, B., Parida, S., Saha, S., Sinha, T. P., Ranjan, R. & Sahoo, P. K. (2015). Optical and dielectric study of strontium modified barium zirconium titanate ceramic prepared by high energy ball milling, Journal of Alloys and Compounds, 645, 586-596. doi: http://dx.doi.org/10.1016/j.jallcom.2015.05.005. ##
[33]. Chen C, Li G, Liu Y. (2015). Synthesis of ZnGa2O4 assisted by high-energy ball milling and its gas-sensing characteristics, Powder Technology, 281, 7-11. doi: http://dx.doi.org/10.1016/j.powtec.2015.04.041. ##
[34]. Zhang, J., Zhang, J., Cai, W., Zhang, F., Yu, L., Wu, Z. & Zhang, Z. (2012). Improving electrochemical properties of spinel lithium titanate by incorporation of titanium nitride via high-energy ball-milling, Journal of Power Sources, 211, 133-139, doi: http://dx.doi.org/10.1016/j.jpowsour.2012.03.088. ##
[35]. Gateshki, M., Petkov, V., Pradhan, S. K. & Vogt, T. (2005). Structure of nanocrystalline MgFe2O4 from X-ray diffraction, Rietveld and atomic pair distribution function analysis, Journal of Applied Crystallography, 38(5), 772-779, doi: doi:10.1107/S0021889805024477. ##
[36]. Ahsanzadeh-Vadeqani, M., Razavi, R. S., Barekat, M., Borhani, G. H., Mishra, A. K. (2017). Preparation of yttria nanopowders for use in transparent ceramics by dry ball-milling technique, Journal of the European Ceramic Society, 37(5), 2169-2177, doi: http://dx.doi.org/10.1016/j.jeurceramsoc.2016.12.006. ##
[37]. Chen, D., Zhang, Y., Chen, B., Kang, Z. (2013). Coupling effect of microwave and mechanical forces during the synthesis of ferrite nanoparticles by microwave-assisted ball milling, Industrial and Engineering Chemistry Research, 52(39), 14179-14184, doi: 10.1021/ie401890j. ##
[38]. Zhang, Y., Wu, Y., Qin, Q., Wang, F. & Chen, D. (2016). A study of the mechanism of microwave-assisted ball milling preparing ZnFe2O4, Journal of Magnetism and Magnetic Materials, 409, 6-9, doi: http://dx.doi.org/10.1016/j.jmmm.2016.02.066. ##
[39]. Bafrooei, H. B. & Ebadzadeh , T. (2013). MgAl2O4 nanopowder synthesis by microwave assisted high energy ball-milling, Ceramics International, 39(8), 8933-8940, doi: http://dx.doi.org/10.1016/j.ceramint.2013.04.089. ##
[40]. Fattahi, B., Haghighi, M., Rahmanivahid, B. & Vardast, N. (2022). Green Fuel Production from Sunflower Oil Using Nanocatalysts Based on Metal Oxides (SrO, La2O3, CaO, MgO, Li2O) Supported over Combustion‐synthesized Mg-spinel, Chemical Engineering Research and Design, 183, 411-423. doi: https://doi.org/10.1016/j.cherd.2022.05.026. ##
[41]. Sajjadi, S. M., Haghighi, M. & Rahmani, F. (2022). On the synergic effect of various anti-coke materials (Ca–K–W) and glow discharge plasma on Ni-based spinel nanocatalyst design for syngas production via hybrid CO2/O2 reforming of methane, Journal of Natural Gas Science and Engineering, 108, 104810, doi: https://doi.org/10.1016/j.jngse.2022.104810. ##
[42]. Yang, L., Fan, C., Luo, L., Chen, Y., Wu, Z., Qin, Z., & Wang, J. (2021). Preparation of Pd/SiO2 catalysts by a simple dry ball-milling method for lean methane oxidation and probe of the state of active pd species, Catalysts, 11(6), 725, doi.org/10.3390/catal11060725. ##
[43]. Gracia, M. J., Losada, E., Luque, R., Campelo, J. M., Luna, D., Marinas, J. M., & Romero, A. A. (2008). Activity of Gallium and Aluminum SBA-15 materials in the Friedel–Crafts alkylation of toluene with benzyl chloride and benzyl alcohol. Applied Catalysis A: General, 349(1-2), 148-155, doi: http://dx.doi.org/10.1016/j.apcata.2008.07.023. ##
[44]. Campelo, J. M., Luna, D., Luque, R., Marinas, J. M., Romero, A. A., Calvino, J. J., & Rodriguez-Luque, M. P. (2005). Synthesis of acidic Al-MCM-48: Influence of the Si/Al ratio, degree of the surfactant hydroxyl exchange, and post-treatment in NH4F solution. Journal of Catalysis, 230(2), 327-338, doi: http://dx.doi.org/10.1016/j.jcat.2004.12.004. ##
[45]. Pineda, A., Balu, A. M., Campelo, J. M., Luque, R., Romero, A. A., & Serrano-Ruiz, J. C. (2012). High alkylation activities of ball-milled synthesized low-load supported iron oxide nanoparticles on mesoporous aluminosilicates, Catalysis Today, 187(1), 65-69, doi: http://dx.doi.org/10.1016/j.cattod.2012.02.028. ##
[46]. Shrinivas V. Ghodke UVC. (2015). Friedel-Crafts alkylation and acylation of aromatic compounds under solvent free conditions using solid acid catalysts. Int J Chem Stud, 2(5), 27-34. ##