بررسی تغییرات رخساره ای، محیط رسوبی و فرآیند های دیاژنزی موجود در مرزهای سکانسی سازند کنگان و تأثیر آن بر کیفیت مخزنی، براساس طبقه بندی لوسیا، درمیادین سلمان و لاوان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم زمین، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

2 گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، ایران

3 دانشکده زمین شناسی، پردیس علوم، دانشگاه تهران، ایران

چکیده

سازند کنگان با سن تریاس بزرگترین ذخایر گازی در خاور میانه و جهان را دارا می‌باشد. این سازند در میدان سلمان (شامل m 187 ضخامت در چاه 2SK-1 و m 189 ضخامت در چاه 2SKD-1) و در میدان لاوان (شامل m 186 ضخامت در چاه LN-3)، همراه با توالی کربناته، سنگ آهک، آهک دولومیتی، دولومیت به همراه میان لایه‌های انیدریتی، مارن و شیل (در مرز کنگان) می‌باشد. طبق مطالعات میکروسکوپی در چاه‌های مذکور، تعداد 15 رخساره در قالب 4 کمربند رخساره‌ای سبخا، جزرومدی، لاگون و سد شناسایی شده است. بر اساس رخساره‌های شناسایی شده محیط رسوب‌گذاری این سازند را می‌توان یک رمپ کربناته معرفی کرد. فرآیندهای دیاژنزی شناخته شده در سازند کنگان که بر روی کیفیت مخزنی مؤثر می‌باشند، عبارتند از: تراکم مکانیکی و شیمیایی، سیمان انیدریتی و کلسیتی به عنوان کاهش‌دهنده کیفیت مخزنی و انحلال، دولومیتی شدن و شکستگی را به عنوان افزایش‌دهنده کیفیت مخزنی نام برد. انواع تخلخل‌های مشاهده شده عبارتند از: تخلخل‌های درون دانه‌ای، قالبی، فنسترال، حفره‌ای، درون ذره‌ای و حاصل از شکستگی. تغییرات عمودی رخساره‌ها نیز نشان‌دهنده 3 سکانس رسوبی رده سوم و 5 سکانس رسوبی رده چهارم در میدان سلمان و لاوان است. هر سکانس از دو دسته رخساره TST (دربرگیرنده رخساره‌های پهنه جزر و مدی، لاگون، پشت سد) و HST (دربردارنده رخساره‌های جزرومدی و سدی) در واحدهای مخزنی K1 و K2 است. مطالعه کیفیت مخزنی در سکانس‌های سازند کنگان نیز با توجه به توزیع و تفکیک نمونه‌ها از لحاظ رخساره‌های دانه پشتیبان و گل پشتیبان، به سمت مرز MFS ( حداکثر غرقابی) و ابتدا و انتهای سیستم تراکت HST (مربوط به محیط رسوبی لاگون تا سد)، با وجود سیمان‌های دولومیتی متوسط تا درشت بلور در مرز سکانس‌ها و تاثیر کمتر سیمان‌های انیدریتی و کلسیتی در تخلخل‌های به وجود آمده نشان‌دهنده قرار گیری واحدهای مخزنی سازند کنگان درکلاس 1 و 2 لوسیا می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of Facies Changes, Sedimentary Environment and Diagenetic Processes in Sequence Boundaries of Kangan Formation and its Effect on Reservoir Quality According to Lucia›s Classification, in Salman and Lavan Fields

نویسندگان [English]

  • Marjan Mohammadi 1
  • Ali Kadkhodaie Ilkhchi 2
  • Hossain Rahimpour 3
  • Rahim Kadkodaie Illkhchi 2
  • Mohsen Aleali 1
1 Department of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Earth Science Department, Faculty of Natural Sciences, University of Tabriz, Iran
3 Department of Geology, University College of Science, University of Tehran, Tehran, Iran
چکیده [English]

Kangan Formation with Triassic age, it has the largest gas reserves in the Middle East and the world. This formation is in Salman field (Including 187 meters of thickness in the 2SK-1 well and 189 meters of thickness in the 2SKD-1 well) And in Lavan field (including 186 meters of thickness in LN-3 well), and with the sequence of carbonate, limestone, Dolomite limestone, Dolomite with anhydrite Layer, Marl and shale (on the Kangan Formation). According to microscopic studies in the mentioned wells, 15 faces were identified which belong to four facies belts: Sabkha, Tidal flat, Lagoon and Shoal. Based on the identified microfacies, a homoclinal carbonate ramp can be introduced. The known diagenesis processes in the Kangan Formation, which are effective on the reservoir quality are: mechanical and chemical compaction, anhydrite and calcite cement as a reservoir quality reducer and dissolution, dolomitization and fracturing can be mentioned as increasing reservoir quality. The types of porosity observed are: Intragranular porosity, Moldic, Fenestral, vuggy, Intraparticle, and fracture. The vertical changes of the facies indicate three third-order depositional sequences and five fourth-order depositional sequences in Salman and Lavan fields. Each sequence consists of two system tracts, TST (including intertidal, lagoon, back shoal) and HST (including intertidal and shoal) in reservoir units K1 and K2. Reservoir quality study also according to distribution and separation of samples of Grain supported and Mud supported facies, sedimentary environment and the size of dolomite crystals, compared to the available porosities and permeability, indicates class 1 and 2 of Lucia.

کلیدواژه‌ها [English]

  • Kangan Formation
  • Homoclinal Ramp
  • Diagenesis
  • Sequence Stratigraphy
  • Reservoir Quality
  • Lucia
[1]. Aali, J., Rahimpour-Bonab, H., & Kamali, M. R. (2006). Geochemistry and origin of the world's largest gas field from Persian Gulf, Iran. Journal of Petroleum Science and Engineering, 50(3-4), 161-175, doi.org/10.1016/j.Petrol.2005.12.004. ##
[2]. Insalaco, E., Virgone, A., Courme, B., Gaillot, J., Kamali, M., Moallemi, A., & Monibi, S. (2006). Upper dalan member and kangan formation between the zagros mountains and offshore Fars, Iran: depositional system, Biostratigraphy and Stratigraphic Architecture, GeoArabia, 11(2), 75-176, doi.org/10.2113/geoarabia110275. ##
]3]. Szabo, F., & Kheradpir, A. (1978). Permian and Triassic stratigraphy, Zagros basin, south‐west Iran. Journal of Petroleum Geology, 1(2), 57-82, doi.org/10.1111/j.1747-5457. 1978.tb00611. x. ##
]4]. Peyravi, M., Kamali, M. R., & Kalani, M. (2010). Depositional environments and sequence stratigraphy of the Early Triassic Kangan Formation in the northern part of the Persian Gulf: implications for reservoir characteristics. Journal of Petroleum Geology, 33(4), 371-386, doi.org/10.1111/j.1747-5457.2010.00485. x. ##
[5]. لاسمی، ی. (1379). رخساره‌ها، محیط‌های رسوبی و چینه‌نگاری سکانس نهشته سنگ‌های پرکامبرین بالایی و پالئوزوئیک، 180، 78، انتشارات سازمان زمین‌شناسی کشور، ایران، sid.ir/paper/458383/fa... ##
[6]. پیروی، م. (1385)، محیط رسوبی و چینه‌نگاری سکانسی سازند کنگان. ##
[7]. Rahimpour‐Bonab, H., Esrafili‐Dizaji, B., & Tavakoli, V. (2010). Dolomitization and anhydrite precipitation in Permo‐Triassic carbonates at the South Pars gasfield, offshore Iran: controls on reservoir quality, Journal of Petroleum Geology, 33(1), 43-66, doi.org/10.1111/j.1747-5457.2010.00463. x. ##
[8]. Martin, A. Z. (2001). Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia, 6(3), 445-504, doi.org/10.2113/geoarabia0603445. ##
[9]. Stampfli, G. M., & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1-2), 17-33, doi.org/10.1016/S0012-821X(01)00588-X. ##
[10]. Dunham, R. J. (1962). Classification of carbonate, rocks according to depositional texture, in: classification of carbonate rocks, Ham, W. E (ed.), American Association of Petroleum Geologists Memoir1, 08-121. ##
[11]. Warren, J. K. (2006). Evaporites: sediments, resources and hydrocarbons, Springer Science & Business Media, .
[12]. Tucker, M.E., 2001- Sedimentary petrology, Third edition, Blackwell, Oxford, 260. ##
[13]. Lucia, F. J., Kerans, C., & Jennings Jr, J. W. (2003). Carbonate reservoir characterization. Journal of Petroleum Technology, 55(06), 70-72, doi.org/10.2118/82071-JPT. ##
[14]. Flügel, E., & Munnecke, A. (2010). Microfacies of carbonate rocks: analysis, interpretation and application, 976(2004), Berlin: Springer. ##
[15]. Flugel, E. (2004). Microfacies of carbaonate rocks. Berline, Springer, 976.
[16]. لطف‌پور، م.، آدابی م. ح.، و قویدل سیوکی م. (1383). بررسی رخساره‌های میکروبی (استروماتولیتی و ترومبولیتی) قاعده سازند کنگان با نگرشی ویژه بر گذر پرمو-تریاس در ناحیه زاگرس، 2(1334). مجله علوم دانشگاه تهران. ‎##
[17]. Tucker, M.E., Wright, V.R., 1990, Carbonate Sedimentology. Blackwell Science, Oxford, 482.
[18]. Maurer, F., Martini, R., Rettori, R., Hillgärtner, H., & Cirilli, S. (2009). The geology of Khuff outcrop analogues in the Musandam Peninsula, United Arab Emirates and Oman. GeoArabia, 14(3), 125-158, doi.org/10.2113/geoarabia1403125. ##
[19]. Abdolmaleki, J., & Tavakoli, V. (2016). Anachronistic facies in the early Triassic successions of the Persian Gulf and its palaeoenvironmental reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 446, 213-224, doi.org/10.1016/j.palaeo.2016.01.031. ##
[20]. Rasser, M. W., Scheibner, C., & Mutti, M. (2005). A paleoenvironmental standard section for Early Ilerdian tropical carbonate factories (Corbieres, France; Pyrenees, Spain). Facies, 51, 218-232. ##
[21]. Reading, H.G. (1996), Sedimentry Environments: processes, facies and stratigraphy, Blackwell Science, Inc.688p.Slowakiewicz, M., Miko1ajewski, Z., 2011, Upper Permain dolomite microbial carbonates as potential-source-rocks-for hydrocarbons (W Poland). Marine and Petroleum Geology, xxx. 1-20. ##
[22]. Ahmad, A. H. M., Bhat, G. M., & Khan, M. H. A. (2006). Depositional environments and diagenesis of the kuldhar and Keera Dome carbonates (Late Bathonian–Early Callovian) of Western India. Journal of Asian Earth Sciences, 27(6), 765-778, doi.org/10.1016/j.jseaes.2005.06.013. ##
[23]. Martini, R., Cirilli, S., Saurer, C., Abate, B., Ferruzza, G., & Lo Cicero, G. (2007). Depositional environment and biofacies characterisation of the Triassic (Carnian to Rhaetian) carbonate succession of Punta Bassano (Marettimo Island, Sicily). Facies, 53, 389-400. ##
[24]. Tucker, M.E., Wright, V.R. (1990). Carbonate Sedimentology. Blackwell Science, Oxford, 482.
[25]. James, N. P., Choquette, P. W., McIlreath, I. A., & Morrow, D. W. (1990). Limestones—the meteoric diagenetic environment. Diagenesis, 4, 35-74. ##
[26]. پورامینی بزنجانی، س.، (1392) تأثیر دیاژنز بر کیفیت مخزنی سازند کنگان در میدان لاوان، خلیج فارس، ##
 
[27]. Adabi, M. H. (2009). Multistage dolomitization of upper jurassic mozduran formation, Kopet-Dagh Basin, ne Iran. Carbonates and Evaporites, 24(1), 16-32. ##
[28]. Melim, L. A. and Scholle, P. A., 2002- Dolomitization of the Capitan Formation forereef facies (Permian, west-Texas.and-New-Mexico): 1207-1227. ##
[29]. Warren, J., 2000, Dolomite: Occurrence, evolution and economically important associations. Earth Science- Reviews,v :52, 1-81. ##
[30]. Lucia, F.J. (1995) Rock- fabricrpetrophysical classification of carbonate pore space for reservoir characterization. AAPG. Bull. 79,1275-1300. ##