تعیین رخساره‌های دیاژنزی براساس نگارهای پتروفیزیکی در مخزن ناهمگن سروک در یکی از میادین نفتی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی نفت، دانشگاه صنعتی امیرکبیر،‌ تهران، ایران/

2 دانشکده مهندسی نفت، دانشگاه صنعتی امیرکبیر،‌ تهران، ایران/دانشگاه علم و فناوری مازندران، بهشهر، ایران

3 گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، ایران

4 شرکت مهندسی و توسعه سروک آذر، ایران

چکیده

در این مطالعه فرایندهای دیاژنزی مؤثر بر کیفیت مخزن سروک در یکی از میادین فروبار دزفول از دیدگاه پتروگرافی و پتروفیزیکی مورد بررسی قرار گرفت. پس از بررسی مقاطع نازک تهیه شده از مغزه‌ها و خرده‌های حفاری و استخراج نگارهای مربوط به پدیده‌های دیاژنزی، مشخص گردید، فرایندهای دیاژنزی اصلی مؤثر بر مخزن سروک مشتمل بر سیمانی‌شدن، انحلال، دولومیتی‌شدن و تراکم می‌باشد. علاوه بر این، نگارهای پتروفیزیکی مورد مطالعه قرار گرفت و با ساخت نگار تخلخل ثانویه و نگار انحراف سرعت (VDL) تلاش گردید بخش‌های حاوی تخلخل‌های حفره‌ای از بخش‌های دیگر تشخیص داده شوند. پس از آماده‌سازی نگارهای مربوطه، جهت تعیین رخساره‌های الکتریکی دیاژنزی از نگارهای تخلخل مفید، تخلخل ثانویه، حجم کانی دولومیت و نگار انحراف سرعت استفاده گردید. بر این اساس، تعداد هشت رخساره دیاژنزی با استفاده از روش خوشه‌بندی تفکیکی گرافیکی (MRGC) تشخیص داده شد. این مطالعه نشان داد، دولومیتی‌شدن در برخی ناحیه‌ها و رخساره‌ها اثر سازنده (مثل رخساره 1) و در برخی دیگر اثر مخرب (مثل رخساره 2) بر روی کیفیت مخزنی داشته است. همچنین تخلخل ثانویه باعث گسترش رخساره‌های با کیفیت مخزنی بهتر شده‌است (مثل رخساره 6). عدم گسترش انحلال و دولومیتی‌شدن منجر به کاهش کیفیت مخزنی در برخی رخساره‌ها شده است (مثل رخساره‌های 3، 4 و 5). بخش‌های با تخلخل کم، حاوی آثار تراکم (استیلولیت‌ها و رگه‌های انحلالی) بیشتری می‌باشد. براساس این مطالعه می‌توان با ساخت رخساره الکتریکی دیاژنزی فرایندهای مختلف دیاژنزی را طبقه‌بندی و گروهای سنگی با تاثیر مشابه دیاژنزی را ازهم تفکیک نمود.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of Diagenetic Facies based on Petrophysical Logs in Heterogeneous Sarvak Reservoir in an Iranian Oil Field

نویسندگان [English]

  • Vali Mehdipour 1
  • Ahmad Reza Rabbani 2
  • Ali Kadkhodaie Ilkhchi 3
  • Houman karkooti 4
  • Mohsen Shourab 4
1 Faculty of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran
2 Faculty of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran\Mazandaran University of Science and Technology (Behshahr), Iran
3 Earth Science Department, Faculty of Natural Sciences, University of Tabriz, Iran
4 Sarvak Azar Engineering and Development Company (SAED), Iran
چکیده [English]

In this study, the significant diagenetic processes in the Sarvak reservoir of an oil field located in the Dezful Embayment were studied from petrographic and petrophysical point of view. Therefore, after studying the thin sections provided by cores and cutting and preparing related diagenetic logs, it was determined that the main diagenetic processes affecting the reservoir quality include cementation, dissolution, dolomitization, and compaction. In addition, petrophysical logs were studied, and then porous zones were distinguished from other parts using VDL, SPI, and dolomite volume logs. Some input logs including secondary porosity, effective porosity, dolomite mineral volume, and VDL logs were used to determine diagenetic electrofacies. Accordingly, eight diagenetic facies codes were identified using the MRGC clustering method. This study indicates that dolomitization had both constructive (Facies 1) and destructive (Facies 2) effects on reservoir quality in different zones. Moreover, secondary porosity causes the development of high reservoir quality facies (Facies 6). Some facies (Facies 3, Facies 4, and Facies 5) have low reservoir quality due to a lack of developing dissolution and dolomitization. In addition, low porosity intervals include high compaction features (solution seam and stylolite). Based on this study, it is possible to construct diagenetic electrofacies indicating the different diagenetic processes and dividing rocks to related rock types.

کلیدواژه‌ها [English]

  • Sarvak Reservoir
  • Dolomite
  • Dissolution
  • Electrofacies
  • Diagenesis
[1]. Calvert, S. E. (1976). The mineralogy and geochemistry of near-shore sediments, Chemical Oceanography, 6, 187-280. ##
[2]. Brown, J. S. (1943). Suggested use of the word microfacies, Economic Geology, 38(4), 325. ##
 
[3]. Wilson, J. L. (2012). Carbonate facies in geologic history, Springer Science & Business Media.
[4] رضایی، م. ر.، (1381) زمین‌شناسی نفت، انتشارات علوی. ##
[5]. Lucia, J. (2007) Carbonate Reservoir Characterization, Springer, Berlin, 332. ##
[6]. Flügel, E. (2012). Microfacies analysis of limestones, Springer Science & Business Media. ##
[7]. Enayati-Bidgoli, A., & Saemi, E. (2019). Effects of late diagenesis on primary reservoir quality of a quartz arenite unit: a case study from the lower Cretaceous successions of SW Iran, Petroleum Science, 16(2), 267-284, doi.org/10.1007/s12182-019-0306-x. ##
[8]. Murray, R. C. (1960). Origin of porosity in carbonate rocks, Journal of Sedimentary Research, 30(1), 59-84, doi.org/10.1306/74D709CA-2B21-11D7-8648000102C1865D. ##
[9]. Durocher, S., & Al-Aasm, I. S. (1997). Dolomitization and neomorphism of Mississippian (Visean) upper Debolt Formation, Blueberry Field, northeastern British Columbia: geologic, petrologic, and chemical evidence, AAPG bulletin, 81(6), 954-977, doi.org/10.1306/522B49AB-1727-11D7-8645000102C1865D. ##
[10]. Li, Y., and Anderson-Sprecher, R, 2006, Facies identification from well logs: A comparison of discriminant analysis and naïve Bayes classifier. Journal of Petroleum Science and Engineering, v. 53, no. 3, p. 149- 157, doi.org/10.1016/j.petrol.2006.06.001. ##
[11]. Moore, C. H., & Wade, W. J. (2013). Carbonate reservoirs: porosity, evolution & diagenesis in a sequence stratigraphic framework, Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework, Second edition, Elsevier, 369. ##
[12] مطیعی، ه. (1372). زمین‌شناسی ایران، چینه‌شناسی زاگرس، سازمان زمین‌شناسی کشور، طرح تدوین کتاب، تهران،499-536 . ##
[13] امیدوار، م.، مهرابی، ح. و سجادی، ف. (1393). مطالعه محیط رسوب‌گذاری و زیست چینه‌نگاری بخش بالایی سازند سروک در میدان نفتی اهواز (چاه شماره 63). رخساره‌های رسوبی، 7(2), 158-177، doi: 10.22067/sed.facies.v7i2.23441.. ##
[14]. Aghanabati, A. (2004). Geology of Iran, Ministry of Industry and Mines, Geological Survey of Iran, 582. ##
[15] Martin, A. Z. (2001). Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences, GeoArabia, 6(3), 445-504, doi.org/10.2113/geoarabia0603445. ##
[16] Malekzadeh, H., Daraei, M., & Bayet-Goll, A. (2020). Field-scale reservoir zonation of the Albian–Turonian Sarvak Formation within the regional-scale geologic framework: A case from the Dezful Embayment, SW Iran, Marine and Petroleum Geology,  121, 104586, doi.org/10.1016/j.marpetgeo.2020.104586. ##
[17]. شاهوردی، ن. رحیم‌پور بناب، ح.، کمالی، م. ر. (1394). محیط رسوبی، دیاژنز و کیفیت مخزنی سازند سروک (بخش بالایی) در میدان نفتی سیری اسفند، پژوهش نفت، 25(84), 99-114، doi.org/10.22071/gsj.2016.41161. ##
[18] محمودی رنانی، ا.، و طاهری، ع. (1390). ریزرخساره‌ها و چینه‌نگاری سکانسی سازند سروک در شمال شرق گچساران (تنگ گرگدار). رخساره‌های رسوبی، 4(2)، 188-198، doi: 10.22067/SED.FACIES.V4I2.9536.. ##
[19] Khatir, R., Jahani, D., Aleali, M., Kohansal-Ghadimvand, N., 2021. Facies, sedimentary environment, diagenesis, and reservoir quality of the Sarvak Formation in the Darquain oil field, southwest of Iran, Applied Sedimentology, 9(17) ,22833.1259. ##
[20]. آقانباتی، ع.، (1383)، زمین‌شناسی ایران: سازمان زمین شناسی و اکتشافات معدنی کشور، 586. ##
[21]. Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., Heward, A. P., & Simmons, M. D. (2001). Sequence stratigraphy of the Arabian Plate, GeoArabia, 2(37), 1. ##
[22]. Dickson, J. A. D. (1966). Carbonate identification and genesis as revealed by staining, Journal of Sedimentary Research, 36(2), 491-505, doi.org/10.1306/74D714F6-2B21-11D7-8648000102C1865D. ##
[23]. Gregg, J. M., & Sibley, D. F. (1984). Epigenetic dolomitization and the origin of xenotopic dolomite texture, Journal of Sedimentary Research, 54(3), 908-931, doi.org/10.1306/212F8535-2B24-11D7-8648000102C1865D. ##
[24]. Chabock, R., Riahi, M. A., & Memariani, M. (2017). Determination of the Petrophysical parameters using geostatistical method in one of the hydrocarbon reservoirs in South West of Iran, Journal Science Enggnirig Research, 4(12), 44-55.‏ ##
[25]. Kumar, M., Dasgupta, R., Singha, D. K., & Singh, N. P. (2018). Petrophysical evaluation of well log data and rock physics modeling for characterization of Eocene reservoir in Chandmari oil field of Assam-Arakan basin, India, Journal of Petroleum Exploration and Production Technology, 8, 323-340, doi.org/10.1007/s13202-017-0373-8. ##
[26]. Kazatchenko, E., Markov, M., & Mousatov, A. (2003, October). Determination of primary and secondary porosity in carbonate formations using acoustic data, In SPE Annual Technical Conference and Exhibition? , SPE-84209, doi.org/10.2118/84209-MS. ##
 
[27]. Shirmohamadi, M., Kadkhodaie, A., Rahimpour-Bonab, H., & Faraji, M. A. (2017). Seismic velocity deviation log: An effective method for evaluating spatial distribution of reservoir pore types, Journal of Applied Geophysics, 139, 223-238, doi.org/10.1016/j.jappgeo.2017.03.001. ##
[28]. Eberli, G. P., Baechle, G. T., Anselmetti, F. S., & Incze, M. L. (2003). Factors controlling elastic properties in carbonate sediments and rocks, The Leading Edge, 22(7), 654-660, doi.org/10.1190/1.1599691. ##
[29]. Jodeiri, A. R. (2018). Reservoir zonation of the Cenomanian-early Turonian Mishrif Formation using velocity deviation log in Sirri Esfand oilfield of the Persian Gulf.‏ ##
[30] Anselmetti, F. S., & Eberli, G. P. (1999). The velocity-deviation log: a tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density logs, AAPG Bulletin, 83(3), 450-466, doi.org/10.1306/00AA9BCE-1730-11D7-8645000102C1865D. ##
[31]. Wyllie, M. R. J., Gregory, A. R., & Gardner, L. W. (1956). Elastic wave velocities in heterogeneous and porous media, Geophysics, 21(1), 41-70, doi.org/10.1190/1.1438217. ##
[32]. Fu, G. M., Qin, X. L., Qing, M., Zhang, T. J., & Yang, J. P. (2009). Division of diagenesis reservoir facies and its control—case study of Chang-3 reservoir in Yangchang formation of Fuxian exploration area in northern Shaanxi, Mining Science and Technology (China), 19(4), 537-543, doi.org/10.1016/S1674-5264(09)60101-0. ##
[33] مهدی‌پور، و.، ربانی، ا. ر. و کدخدایی، ع. (1401). مدل‌سازی تخلخل با استفاده هم‌زمان نشان‌گرهای لرزه‌ای و رخساره‌های الکتریکی در مخزن سروک در یکی از میادین نفتی ایران، پژوهش نفت 32(1401-4)، doi:10.22078/PR.2022.4652.3089.. ##
[34] Serra, O. T., & Abbott, H. T. (1982). The contribution of logging data to sedimentology and stratigraphy. Society of Petroleum Engineers Journal, 22(01), 117-131, doi.org/10.2118/9270-PA. ##
[35] Jafarzadeh, N., Kadkhodaie, A., Ahmad, B. J., Kadkhodaie, R., & Karimi, M. (2019). Identification of electrical and petrophysical rock types based on core and well logs: Utilizing the results to delineate prolific zones in deep water sandy packages from the Shah Deniz gas field in the south Caspian Sea basin, Journal ofNatural Gas Science and Engineering, 69, 102923, doi.org/10.1016/j.jngse.2019.102923. ##
[36] Shanor, G. G., Samimi, B., Bagherpour, H., Karakas, M., Buck, S., Carnegie, A., & Nasta, V. (1993). An integrated reservoir characterization study of a giant middle east oil field: part 1—geological modelling, In SPE Middle East Oil and Gas Show and Conference, SPE-25657, doi.org/10.2118/25657-MS. ##
[37] Saller, A. H., & Henderson, N. (1998). Distribution of porosity and permeability in platform dolomites: Insight from the Permian of west Texas, AAPG bulletin, 82(8), 1528-1550, doi.org/10.1306/1D9BCB01-172D-11D7-8645000102C1865D. ##
[38] Hajikazemi, E., Al-Aasm, I. S., & Coniglio, M. (2017). Diagenetic history and reservoir properties of the Cenomanian-Turonian carbonates in southwestern Iran and the Persian Gulf, Marine and Petroleum Geology, 88, 845-857, doi.org/10.1016/j.marpetgeo.2017.06.035. ##
[39] Morrow, D. W. (1982). Diagenesis 2. Dolomite-part 2 dolomitization models and Ancient dolostones, Geoscience Canada, 9(2), 95-107. ##
[40] Shahverdi, N., Rahimpour-Bonab, H., Kamali, M., 2015. Sedimentary Environment, Diagenesis, and Reservoir Quality of Sarvak Formation (Upper Part) in Siri (E) Oilfields. Journal of Petroleum Research 25(84), 99-114. ##
[41] Hajikazemi, E., Al-Aasm, I. S., & Coniglio, M. (2017). Diagenetic history and reservoir properties of the Cenomanian-Turonian carbonates in southwestern Iran and the Persian Gulf. Marine and Petroleum Geology, 88, 845-857, doi.org/10.1016/j.marpetgeo.2017.06.035. ##
[42] Cui, Y., Jones, S. J., Saville, C., Stricker, S., Wang, G., Tang, L., & Chen, J. (2017). The role played by carbonate cementation in controlling reservoir quality of the Triassic Skagerrak Formation, Norway, Marine and Petroleum Geology, 85, 316-331,. doi.org/10.1016/j.marpetgeo.2017.05.020 . ##
[43] Zou, C. N., Tao, S. Z., Hui, Z., Zhang, X. X., He, D. B., Zhou, C. M., & Hua, Y. (2008). Genesis, classification, and evaluation method of diagenetic facies, Petroleum Exploration and Development, 35(5), 526-540, doi.org/10.1016/S1876-3804(09)60086-0. ##