[1]. Khan, T. S., Khan, M. S., Chyu, M. C., & Ayub, Z. H. (2010). Experimental investigation of single-phase convective heat transfer coefficient in a corrugated plate heat exchanger for multiple plate configurations, Applied Thermal Engineering, 30(8-9), 1058-1065, doi.org/10.1016/j.applthermaleng.2010.01.021. ##
[2]. Abu-Khader, M. M. (2012). Plate heat exchangers: Recent advances. Renewable and sustainable energy reviews, 16(4), 1883-1891, doi.org/10.1016/j.rser.2012.01.009. ##
[3]. Jin, S., & Hrnjak, P. (2017). Effect of end plates on heat transfer of plate heat exchanger, International Journal of Heat and Mass Transfer, 108, 740-748, doi.org/10.1016/j.ijheatmasstransfer.2016.11.106. ##
[4]. Martin, H. (1996). A theoretical approach to predict the performance of chevron-type plate heat exchangers, Chemical Engineering and Processing: Process Intensification, 35(4), 301-310. ##
[5]. Islam, M. S., Xu, F., & Saha, S. C. (2020). Thermal performance investigation in a novel corrugated plate heat exchanger, International journal of heat and mass transfer, 148, 119095, doi.org/10.1016/j.ijheatmasstransfer.2019.119095. ##
[6]. Abou Elmaaty, T. M., Kabeel, A. E., & Mahgoub, M. (2017). Corrugated plate heat exchanger review, Renewable and Sustainable Energy Reviews, 70, 852-860, doi.org/10.1016/j.rser.2016.11.266. ##
[7]. Han, X. H., Cui, L. Q., Chen, S. J., Chen, G. M., & Wang, Q. (2010). A numerical and experimental study of chevron, corrugated-plate heat exchangers, International Communications in Heat and Mass Transfer, 37(8), 1008-1014, doi.org/10.1016/j.icheatmasstransfer.2010.06.026. ##
[8]. Habibishandiz, M., & Saghir, M. Z. (2022). A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms, Thermal Science and Engineering Progress, 30, 101267, doi.org/10.1016/j.tsep.2022.101267. ##
[9]. Wajs, J., & Mikielewicz, D. (2016). Influence of metallic porous microlayer on pressure drop and heat transfer of stainless steel plate heat exchanger, Applied Thermal Engineering, 93, 1337-1346, doi.org/10.1016/j.applthermaleng.2015.08.101. ##
[10]. Święch, D., Palumbo, G., Piergies, N., Kollbek, K., Marzec, M., Szkudlarek, A., & Paluszkiewicz, C. (2023). Surface modification of Cu nanoparticles coated commercial titanium in the presence of tryptophan: Comprehensive electrochemical and spectroscopic investigations. Applied Surface Science, 608, 155138, doi.org/10.1016/j.apsusc.2022.155138. ##
[11]. Murari, G., Nahak, B., & Pratap, T. (2023). Hybrid surface modification for improved tribological performance of IC engine components–a review, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089221150718, doi.org/10.1177/09544089221150718. ##
[12]. Sheikholeslami, M., Gorji-Bandpy, M., & Ganji, D. D. (2015). Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices, Renewable and Sustainable Energy Reviews, 49, 444-469, doi.org/10.1016/j.rser.2015.04.113. ##
[13]. Kabeel, A. E., Abou El Maaty, T., & El Samadony, Y. (2013). The effect of using nano-particles on corrugated plate heat exchanger performance, Applied Thermal Engineering, 52(1), 221-229, doi.org/10.1016/j.applthermaleng.2012.11.027. ##
[14]. Wajs, J., & Mikielewicz, D. (2014). Effect of surface roughness on thermal-hydraulic characteristics of plate heat exchanger, Key Engineering Materials, 597, 63-74, doi.org/10.4028/www.scientific.net/KEM.597.63. ##
[15]. Armstrong, M., Sivasubramanian, M., & Selvapalam, N. (2021). Experimental investigation on the heat transfer performance analysis in silver nano-coated double pipe heat exchanger using displacement reaction, Materials Today: Proceedings, 45, 2482-2490, doi.org/10.1016/j.matpr.2020.11.100. ##
[16]. Lin, H. Y., Wu, Y. L., Yang, K. S., Tseng, C. Y., & Wu, S. K. (2020, April). The effect of surface modification on heat transfer of heat exchanger, In Journal of Physics: Conference Series, 1500, (1), 012044, IOP Publishing, doi:10.1088/1742-6596/1500/1/012044. ##
[17]. Furberg, R., Palm, B., Li, S., Toprak, M., & Muhammed, M. (2009). The use of a nano-and microporous surface layer to enhance boiling in a plate heat exchanger, doi.org/10.1115/1.3180702. ##
[18]. Huang, M., Xie, L., Wang, Y., He, H., Yu, H., Cui, J., & Xiong, Y. (2023). Efficient uranium electrochemical deposition with a functional phytic Acid-Doped Polyaniline/Graphite sheet electrode by Adsorption-electrodeposition strategy, Chemical Engineering Journal, 457, 141221, doi.org/10.1016/j.cej.2022.141221. ##
[19]. Mirzaee, M., & Dehghanian, C. (2019). Synthesis of nanoporous copper foam-applied current collector electrode for supercapacitor. Journal of the Iranian Chemical Society, 16, 283-292. ##
[20]. Cengel, R. A. (2008). Introduction to thermodynamics and heat transfer. McGraw-Hill. ##
[21]. Idel’čik, I. E. (1966). Handbook of hydraulic resistance: coefficients of local resistance and of friction. Israel Program for Scientific Translations. ##
[22]. Cheng, L., Chang, Q., Chang, Y., Zhang, N., Tao, C., Wang, Z., & Fan, X. (2016). Hierarchical forest-like photoelectrodes with ZnO nanoleaves on a metal dendrite array, Journal of Materials Chemistry A, 4(25), 9816-9821, doi.org/10.1039/C6TA02764D. ##
[23]. Nikolić, N. D., Popov, K. I., Pavlović, L. J., & Pavlović, M. G. (2006). Morphologies of copper deposits obtained by the electrodeposition at high overpotentials. Surface and Coatings Technology, 201(3-4), 560-566, doi.org/10.1016/j.surfcoat.2005.12.004. ##
[24]. Mattarozzi, L., Cattarin, S., Comisso, N., Gerbasi, R., Guerriero, P., Musiani, M., & Verlato, E. (2013). Electrodeposition of Cu-Ni alloy electrodes with bimodal porosity and their use for nitrate reduction. ECS Electrochemistry Letters, 2(11), D58, doi: 10.1149/2.004311eel. ##
[25]. Qiu, R., Cha, H. G., Noh, H. B., Shim, Y. B., Zhang, X. L., Qiao, R., & Kang, Y. S. (2009). Preparation of dendritic copper nanostructures and their characterization for electroreduction, The Journal of Physical Chemistry C, 113(36), 15891-15896, doi.org/10.1021/jp904222b. ##
[26]. Bajpai, A. K., Bhatt, R., & Katare, R. (2016). Atomic force microscopy enabled roughness analysis of nanostructured poly (diaminonaphthalene) doped poly (vinyl alcohol) conducting polymer thin films, Micron, 90, 12-17, doi.org/10.1016/j.micron.2016.07.012. ##
[27]. Welz, B., & Sperling, M. (2008). Atomic absorption spectrometry. John Wiley & Sons. ##
[28]. Song, J., Wang, F., & Cheng, L. (2012). Experimental study and analysis of a novel multi-media plate heat exchanger, Science China Technological Sciences, 55, 2157-2162. ##
[29]. Doo, J. H., Ha, M. Y., Min, J. K., Stieger, R., Rolt, A., & Son, C. (2012). An investigation of cross-corrugated heat exchanger primary surfaces for advanced intercooled-cycle aero engines (Part-I: Novel geometry of primary surface), International Journal of Heat and Mass Transfer, 55(19-20), 5256-5267, doi.org/10.1016/j.ijheatmasstransfer.2012.05.034. ##
[30]. Naghash, A., Sattari, S., & Rashidi, A. (2016). Experimental assessment of convective heat transfer coefficient enhancement of nanofluids prepared from high surface area nanoporous graphene, International Communications in Heat and Mass Transfer, 78, 127-134, doi.org/10.1016/j.icheatmasstransfer.2016.09.004. ##
[31]. Park, Y., Park, H. K., Pusey, A., Hong, J., Park, J., Chung, B. J., & Kim, H. (2019). Heat transfer augmentation in two-phase flow heat exchanger using porous microstructures and a hydrophobic coating. Applied Thermal Engineering, 153, 433-447, doi.org/10.1016/j.applthermaleng.2019.03.030. ##
[32]. Ghodrati, M., Mousavi-Kamazani, M., & Bahrami, Z. (2023). Synthesis of superhydrophobic coatings based on silica nanostructure modified with organosilane compounds by sol–gel method for glass surfaces, Scientific Reports, 13(1), 548. ##
[33]. Miljkovic, N., Enright, R., Nam, Y., Lopez, K., Dou, N., Sack, J., & Wang, E. N. (2013). Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano letters, 13(1), 179-187, doi.org/10.1021/nl303835d.
[34]. Bonanno, A., Raimondo, M., & Pinelli, M. (2019). Use of nanostructured coating to improve heat exchanger efficiency, Factories of the Future: The Italian Flagship Initiative, 275-292. ##
[35]. Zhu, Y., Tso, C. Y., Ho, T. C., Leung, M. K., Yao, S., & Qiu, H. H. (2020). Heat transfer enhancement on tube surfaces with biphilic nanomorphology, Applied Thermal Engineering, 180, 115778, doi.org/10.1016/j.applthermaleng.2020.115778. ##
[36]. Oon, C. S., Kazi, S. N., Hakimin, M. A., Abdelrazek, A. H., Mallah, A. R., Low, F. W., ... & Kamanger, S. (2020). Heat transfer and fouling deposition investigation on the titanium coated heat exchanger surface. Powder Technology, 373, 671-680, doi.org/10.1016/j.powtec.2020.07.010. ##
[37]. Gusew, S., & Stuke, R. (2019). Pressure drop in plate heat exchangers for single-phase convection in turbulent flow regime: experiment and theory. International Journal of Chemical Engineering, 2019, doi.org/10.1155/2019/3693657. ##
[38]. Askari, S., Lotfi, R., Seifkordi, A., Rashidi, A. M., & Koolivand, H. (2016). A novel approach for energy and water conservation in wet cooling towers by using MWNTs and nanoporous graphene nanofluids. Energy conversion and management, 109, 10-18, doi.org/10.1016/j.enconman.2015.11.053. ##