بررسی رفتار جذبی نانو صفحات چارچوب فلز-آلی بر پایه کبالت در گوگردزدایی از مدل نفتی

نوع مقاله : مقاله پژوهشی

نویسنده

گروه شیمی، دانشکده علوم، دانشگاه اراک، ایران

چکیده

در این مطالعه، خواص جذب چارچوب فلز- آلی بر پایه نانوصفحات یکنواخت کبالت                                                                        (Co6(oba)6(CH3O)4(O)2]n·3DMF (TMU-11NP] برای حذف دی بنزوتیوفن (DBT) از مدل نفتی بررسی شد. TMU-11NP را می‌توان به‌سرعت و به سهولت از طریق روش سونوشیمیایی سنتز کرد. اثر کاهش اندازه ذرات و افزایش مساحت سطح از 630 به m2/g 838 و نیز تغییر مورفولوژی از تجمع ذرات کلوخه‌ای به نانو صفحات منظم باعث افزایش در حداکثر میزان جذب DBT از 825 به mg/g 6/1666 شد. آزمایش انتخاب‌پذیری DBT در مقابل نفتالین (NA) به‌وضوح نشان داد که بخش اصلی جذب برروی سایت‌های غیراشباع در اطراف مراکز کبالت انجام می‌شود و برهم‌کنش‌های π-π بین پیوندهای آلی TMU-11 و حلقه آروماتیک DBT مسئول فرآیند گوگردزدایی جذبی (ADS) نهستند و اثرات هم‌افزایی کاهش اندازه ذره و به‌دنبال آن، افزایش مساحت سطح و افزایش میزان دسترسی به مکان‌های کوئوردیناسیونی غیراشباع غیرفعال در اطراف یکی از مراکز کبالت و نیز مورفولوژی یکنواخت صفحه منجر به مشاهده چنین نتایجی شده است. همچنین، نانو ذرات Co3O4 حاصل از کلسینه کردن TMU-11NP، کارآیی حذف DBT بالاتر (mg/g 300) را در مقایسه با همتای تجاری خود (mg/g 83) نشان می‌دهند. سازوکار جذب DBT در حضور جاذب TMU-11NP بررسی شد و مشخص شد که از مدل لانگمویر تبعیت می‌کند. یافته‌های ما می‌تواند رویکرد جدیدی برای تولید جاذب‌ها با کارآیی مطلوب در کاربردهای عملی ارائه دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Adsorption Behavior of Cobalt based Metal-organic Framework Nanoplates in Desulfurization of Oil Model

نویسنده [English]

  • Mohammad Yaser Masoomi
Department of Chemistry, Faculty of Sciences, Arak University, Iran
چکیده [English]

The adsorption properties of uniform nano-plate cobalt based metal-organic framework of [Co6(oba)6(CH3O)4(O)2]n·3DMF (TMU-11NP) for removal of dibenzothiophene (DBT) has been investigated. TMU-11NP can be obtained quickly and easily via sonochemical method. The effect of particle size reduction and enhancement of surface area from 630 to 838 m2/g and changing the morphology from the agglomeration of particles to regular nanoplates has increased the absorption capacity of DBT from 825 to 1666.6 mg/g. The selectivity test of DBT over naphthalene (NA) clearly shows that π-π interactions between organic linkers of TMU-11 and the aromatic ring of DBT are not responsible for the adsorption desulfurization (ADS) process. The synergistic effects of reducing the particle size and subsequently, increasing the surface area and increasing the accessibility of inactive unsaturated coordination sites around one of the cobalt centers, as well as the uniform morphology of the plates, have led to the observation of such results. Also, nano particles of Co3O4, obtained from calcination of TMU-11NP, show higher DBT removal performance (300 mg/g) compared to its commercial counterpart (83 mg/g). The adsorption mechanism of DBT in the presence of TMU-11NP adsorbent was investigated and it was found to follow the Langmuir model. Our findings may offer a new approach to producing adsorbents with preferable performance in practical applications.

کلیدواژه‌ها [English]

  • Metal-organic Framework
  • DBT
  • Removal
  • Desulfurization
  • Sonochemistry
  • Nano-plates
[1]. Tang, L., Luo, G., Zhu, M., Kang, L., & Dai, B. (2013). Preparation, characterization and catalytic performance of HPW-TUD-1 catalyst on oxidative desulfurization, Journal of Industrial and Engineering Chemistry, 19(2), 620-626, doi.org/10.1016/j.jiec.2012.09.015. ##
[2]. Masoomi, M. Y., Bagheri, M., & Morsali, A. (2015). Application of two cobalt-based metal–organic frameworks as oxidative desulfurization catalysts, Inorganic Chemistry, 54(23), 11269-11275, doi.org/10.1021/acs.inorgchem.5b01850. ##
[3]. Bagheri, M., Masoomi, M. Y., & Morsali, A. (2017). A MoO3–metal–organic framework composite as a simultaneous photocatalyst and catalyst in the PODS process of light oil, ACS Catalysis, 7(10), 6949-6956, doi.org/10.1021/acscatal.7b02581. ##
[4]. Ania, C. O., & Bandosz, T. J. (2005). Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption of dibenzothiophene. Langmuir, 21(17), 7752-7759, doi.org/10.1021/la050772e. ##
[5]. Gray, K. A., Pogrebinsky, O. S., Mrachko, G. T., Xi, L., Monticello, D. J., & Squires, C. H. (1996). Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nature biotechnology, 14(13), 1705-1709. ##
[6]. Wang, M., Liu, W., Hou, M., Li, Q., Han, Y., Liu, G., & Zheng, M. (2016). Removal of polychlorinated naphthalenes by desulfurization and emissions of polychlorinated naphthalenes from sintering plant, Scientific Reports, 6(1), 26444. ##
[7]. Kim, J., McNamara, N. D., & Hicks, J. C. (2016). Catalytic activity and stability of carbon supported V oxides and carbides synthesized via pyrolysis of MIL-47 (V). Applied Catalysis A: General, 517, 141-150, doi.org/10.1016/j.apcata.2016.03.011. ##
[8]. Liu, H., Li, Y., Yin, C., Wu, Y., Chai, Y., Dong, D., & Liu, C. (2016). One-pot synthesis of ordered mesoporous NiMo-Al2O3 catalysts for dibenzothiophene hydrodesulfurization, Applied Catalysis B: Environmental, 198, 493-507, doi.org/10.1016/j.apcatb.2016.06.004. ##
[9]. Song, H. S., Ko, C. H., Ahn, W., Kim, B. J., Croiset, E., Chen, Z., & Nam, S. C. (2012). Selective dibenzothiophene adsorption on graphene prepared using different methods, Industrial & Engineering Chemistry research, 51(30), 10259-10264, doi.org/10.1021/ie301209c. ##
[10]. Zhang, W., Liu, H., Xia, Q., & Li, Z. (2012). Enhancement of dibenzothiophene adsorption on activated carbons by surface modification using low temperature oxygen plasma. Chemical Engineering Journal, 209, 597-600, doi.org/10.1016/j.cej.2012.08.050. ##
[11]. Zhang, W., Liu, H., Xia, Q., & Li, Z. (2012). Enhancement of dibenzothiophene adsorption on activated carbons by surface modification using low temperature oxygen plasma. Chemical Engineering Journal, 209, 597-600, doi.org/10.1016/j.cej.2012.08.050. ##
[12]. Granadeiro, C. M., Nogueira, L. S., Julião, D., Mirante, F., Ananias, D., Balula, S. S., & Cunha-Silva, L. (2016). Influence of a porous MOF support on the catalytic performance of Eu-polyoxometalate based materials: desulfurization of a model diesel, Catalysis Science & Technology, 6(5), 1515-1522, doi.org/10.1039/C5CY01110H. ##
[13]. Yi, Z., Ma, X., Song, J., Yang, X., & Tang, Q. (2019). Investigations in enhancement biodesulfurization of model compounds by ultrasound pre-oxidation, Ultrasonics Sonochemistry, 54, 110-120, doi.org/10.1016/j.ultsonch.2019.02.009. ##
[14]. Rahimi, M., Shahhosseini, S., & Movahedirad, S. (2019). Hydrodynamic and mass transfer investigation of oxidative desulfurization of a model fuel using an ultrasound horn reactor, Ultrasonics Sonochemistry, 52, 77-87, doi.org/10.1016/j.ultsonch.2018.11.006. ##
[15]. Mohseni, E., Rahmani, A., & Hamdi, Z. (2023). In situ electrochemical synthesis of poly4, 4′ methylene dianiline/metals hybrid for removal of dibenzothiophene as hazard material in model fuel, Inorganic and Nano-Metal Chemistry, 1-14, doi.org/10.1080/24701556.2023.2166073. ##
[16]. Masoomi, M. Y., Morsali, A., Dhakshinamoorthy, A., & Garcia, H. (2019). Mixed‐metal MOFs: unique opportunities in metal–organic framework (MOF) functionality and design, Angewandte Chemie, 131(43), 15330-15347, doi.org/10.1002/ange.201902229. ##
[17]. Bloch, E. D., Britt, D., Lee, C., Doonan, C. J., Uribe-Romo, F. J., Furukawa, H., & Yaghi, O. M. (2010). Metal insertion in a microporous metal− organic framework lined with 2, 2′-bipyridine, Journal of the American Chemical Society, 132(41), 14382-14384, doi.org/10.1021/ja106935d. ##
[18]. Catarineu, N. R., Schoedel, A., Urban, P., Morla, M. B., Trickett, C. A., & Yaghi, O. M. (2016). Two principles of reticular chemistry uncovered in a metal–organic framework of heterotritopic linkers and infinite secondary building units, Journal of the American Chemical Society, 138(34), 10826-10829, doi.org/10.1021/jacs.6b07267. ##
[19]. Chae, H. K., Siberio-Pérez, D. Y., Kim, J., Go, Y., Eddaoudi, M., Matzger, A. J., & Materials Design and Discovery Group. (2004). A route to high surface area, porosity and inclusion of large molecules in crystals, Chem., 321 (2023) 123845. Nature, 427(6974), 523-527. ##
[20]. Hu, M. L., Masoomi, M. Y., & Morsali, A. (2019). Template strategies with MOFs, Coordination Chemistry Reviews, 387, 415-435, doi.org/10.1016/j.ccr.2019.02.021. ##
[21]. Bagheri, M., & Masoomi, M. Y. (2020). Sensitive ratiometric fluorescent metal-organic framework sensor for calcium signaling in human blood ionic concentration media, ACS Applied Materials & Interfaces, 12(4), 4625-4631, doi.org/10.1021/acsami.9b20489. ##
[22]. Razavi, S. A. A., Masoomi, M. Y., & Morsali, A. (2017). Stimuli‐responsive metal–organic framework (MOF) with chemo‐switchable properties for colorimetric detection of CHCl3, Chemistry–A European Journal, 23(51), 12559-12564, doi.org/10.1002/chem.201702127. ##
[23]. Guo, Y., Xie, W., Li, H., Li, J., Hu, J., & Liu, H. (2022). Construction of hydrophobic channels on Cu (I)-MOF surface to improve selective adsorption desulfurization performance in presence of water, Separation and Purification Technology, 285, 120287, doi.org/10.1016/j.seppur.2021.120287. ##
[24]. Liu, Y. X., Lin, Q. J., Dai, F. F., Xue, Y. X., Gao, D. L., Chen, J. H., & Yang, Q. (2023). Efficient adsorptive removal of dibenzothiophene from model fuels by encapsulated of Cu+ and phosphotungstic acid (PTA) in Co-MOF, Journal of Solid State Chemistry, 321, 123845, doi.org/10.1016/j.jssc.2023.123845. ##
[25]. Matloob, A. M., Abd El-Hafiz, D. R., Saad, L., & Mikhail, S. (2023). Hybrid Nanoarchitectonics with Cr, Fe-MOF/graphene nanocomposite for removal of organic sulfur compounds from diesel fuel, Journal of Inorganic and Organometallic Polymers and Materials, 33(1), 254-265, doi.org/10.1007/s10904-022-02472-0. ##
[26]. Zhou, T., Wang, S., Zhang, C., Yao, Y., Chen, Y., Lu, S., & Liao, X. (2023). Preparation of Ti-MOFs for efficient adsorptive desulfurization: Synthesis, characterization, and adsorption mechanisms, Fuel, 339, 127396, doi.org/10.1016/j.fuel.2023.127396. ##
[27]. Abdollahi, N., Masoomi, M. Y., Morsali, A., Junk, P. C., & Wang, J. (2018). Sonochemical synthesis and structural characterization of a new Zn (II) nanoplate metal–organic framework with removal efficiency of Sudan red and Congo red, Ultrasonics Sonochemistry, 45, 50-56, doi.org/10.1016/j.ultsonch.2018.03.001. ##
[28]. Razavi, S. A. A., Masoomi, M. Y., & Morsali, A. (2018). Morphology-dependent sensing performance of dihydro-tetrazine functionalized MOF toward Al (III), Ultrasonics Sonochemistry, 41, 17-26, doi.org/10.1016/j.ultsonch.2017.09.009. ##
[29]. Parsa, F., Ghorbanloo, M., Masoomi, M. Y., Morsali, A., Junk, P. C., & Wang, J. (2018). Ultrasound-assisted synthesis and characterization of a new metal-organic framework based on azobenzene-4, 4-dicarboxylic acid: precursor for the fabrication of Co3O4 nano-particles, Ultrasonics Sonochemistry, 45, 197-203, doi.org/10.1016/j.ultsonch.2018.03.014. ##
[30]. Safarifard, V., & Morsali, A. (2015). Applications of ultrasound to the synthesis of nanoscale metal–organic coordination polymers. Coordination Chemistry Reviews, 292, 1-14, doi.org/10.1016/j.ccr.2015.02.014. ##
[31]. Abbasi, A. R., Moshtkob, A., Shahabadi, N., Masoomi, M. Y., & Morsali, A. (2019). Synthesis of nano zinc-based metal–organic frameworks under ultrasound irradiation in comparison with solvent-assisted linker exchange: Increased storage of N2 and CO2, Ultrasonics Sonochemistry, 59, 104729, doi.org/10.1016/j.ultsonch.2019.104729. ##
[32]. Razavi, S. A. A., Masoomi, M. Y., & Morsali, A. (2017). Ultrasonic assisted synthesis of a tetrazine functionalized MOF and its application in colorimetric detection of phenylhydrazine, Ultrasonics Sonochemistry, 37, 502-508, doi.org/10.1016/j.ultsonch.2017.02.011. ##
[33]. Haneef, M., Yaqoob, K., Umer, M. A., & Hussain, Z. (2020). A novel strategy for synthesis of Al powder comprising of Al nanoflakes via ultrasonication of Al foil. Ultrasonics Sonochemistry, 61, 104838, doi.org/10.1016/j.ultsonch.2019.104838. ##
[34]. Masoomi, M. Y., & Morsali, A. (2012). Applications of metal–organic coordination polymers as precursors for preparation of nano-materials, Coordination Chemistry Reviews, 256(23-24), 2921-2943, doi.org/10.1016/j.ccr.2012.05.032. ##
[35]. Bagheri, M., Masoomi, M. Y., & Morsali, A. (2017). High organic sulfur removal performance of a cobalt based metal-organic framework, Journal of Hazardous Materials, 331, 142-149, doi.org/10.1016/j.jhazmat.2017.02.037. ##
[36]. Spek, A. L. J. (2003). Single-crystal structure validation with the program PLATON. Journal of applied crystallography, 36(1), 7-13, doi.org/10.1107/S0021889802022112. ##
[37]. Jiang, Z., Liu, Y., Sun, X., Tian, F., Sun, F., Liang, C., & Li, C. (2003). Activated carbons chemically modified by concentrated H2SO4 for the adsorption of the pollutants from wastewater and the dibenzothiophene from fuel oils, Langmuir, 19(3), 731-736, doi.org/10.1021/la020670d. ##
[38]. Ania, C. O., & Bandosz, T. J. (2006). Metal-loaded polystyrene-based activated carbons as dibenzothiophene removal media via reactive adsorption, Carbon, 44(12), 2404-2412, doi.org/10.1016/j.carbon.2006.05.016. ##
[39]. Haji, S., & Erkey, C. (2003). Removal of dibenzothiophene from model diesel by adsorption on carbon aerogels for fuel cell applications, Industrial & engineering chemistry research, 42(26), 6933-6937, doi.org/10.1021/ie030518m. ##
[40]. Shi, F., Hammoud, M., & Thompson, L. T. (2011). Selective adsorption of dibenzothiophene by functionalized metal organic framework sorbents. Applied Catalysis B: Environmental, 103(3-4), 261-265, doi.org/10.1016/j.apcatb.2010.07.016. ##
[41]. Qin, L., Zhou, Y., Li, D., Zhang, L., Zhao, Z., Zuhra, Z., & Mu, C. (2016). Highly dispersed HKUST-1 on milimeter-sized mesoporous γ-Al2O3 beads for highly effective adsorptive desulfurization, Industrial & Engineering Chemistry Research, 55(27), 7249-7258, doi.org/10.1021/acs.iecr.6b01001. ##
[42]. Tang, W., Gu, J., Huang, H., Liu, D., & Zhong, C. (2016). Metal‐organic frameworks for highly efficient adsorption of dibenzothiophene from liquid fuels, AIChE Journal, 62(12), 4491-4496, doi.org/10.1002/aic.15384. ##
[43]. Park, T. H., Cychosz, K. A., Wong-Foy, A. G., Dailly, A., & Matzger, A. J. (2011). Gas and liquid phase adsorption in isostructural Cu 3 [biaryltricarboxylate] 2 microporous coordination polymers, Chemical Communications, 47(5), 1452-1454, doi.org/10.1039/C0CC03482G. ##
[44]. Jia, S. Y., Zhang, Y. F., Liu, Y., Qin, F. X., Ren, H. T., & Wu, S. H. (2013). Adsorptive removal of dibenzothiophene from model fuels over one-pot synthesized PTA@ MIL-101 (Cr) hybrid material, Journal of hazardous materials, 262, 589-597, doi.org/10.1016/j.jhazmat.2013.08.056. ##
[45]. Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar, 24, 1-39. ##
[46]. Ho, Y. S. (2006). Review of second-order models for adsorption systems, Journal of hazardous materials, 136(3), 681-689, doi.org/10.1016/j.jhazmat.2005.12.043. ##
[47]. زندی ا.، اکبری سنه، ر. و رحمانی چیانه، ف. (2022). تأثیر زئولیت طبیعی کلینوپتیلولیت بر خواص و عملکرد فتوکاتالیستی نیمه‌رسانای BiOI در تخریب نوری پساب رنگی, پژوهش نفت، 32، 48-65. ##
[48]. خان محمدی، م. رحمانی چیانه، ف.، رهبر شهروزی ج. (2022). تثبیت نانوذره‌های کاتالیستی نوری TiO2 برروی جاذب متخلخل مزوروزنه MCM-41 به‌منظور پالایش آب آلوده به آنتی‌بیوتیک تتراسایکلین، نشریه شیمی و مهندسی شیمی ایران، 41، 219-233. ##
[49]. Homayoun, M. B., Dehvedar, M., & Ashhar, A. H. (2023). Comparison and design of optimal mesh size in computational fluid dynamics model of well cleaning, Journal of Petroleum Research, 33(1402-1), 84-99, doi: 10.22078/pr.2022.4788.3148. ##
[50]. Barari, M., Lashkarbolooki, M., & Abedini, R. (2023). Effect of cationic chain length part of ionic liquid based on the imidazolium on the spreading coefficient of crude oil on dolomitic rock surface in the presence of sulfate and chloride ions, Journal of Petroleum Research, 33(1402-1), 133-145. ##
[51]. Zhao, Z., Gao, W., Chang, J., Chen, Y., Zhang, Q., & Wang, B. (2022). An Analysis of Deep Neural Network Model in Recognition of Mud Cuttings Image for Practical Applications. Journal of Petroleum Science and Technology, 12(4), 53-61, doi: 10.22078/jpst.2023.4852.1812. ##
[52]. Rasouli, M., & Yaghobi, N. (2022). Pt-Impregnated ZnO/HZSM-5 Catalyst for Aromatics Synthesis by CO2 Hydrogenation, Journal of Petroleum Science and Technology, 12(4), 13-24, doi: 10.22078/jpst.2023.5025.1855. ##