[1]. Soares, J. B., & McKenna, T. F. (2012). Polyolefin reaction engineering, 187-269, Weinheim, Germany: Wiley-VCH. ##
[2]. Ferrero, M. A., & Chiovetta, M. G. (1990). Preliminary design of a loop reactor for bulk propylene polymerization, Polymer-Plastics Technology and Engineering, 29(3), 263-287. ##
[3]. Zacca, J. J., & Ray, W. H. (1993). Modelling of the liquid phase polymerization of olefins in loop reactors, Chemical Engineering Science, 48(22), 3743-3765. ##
[4]. Reginato, A. S., Zacca, J. J., & Secchi, A. R. (2003). Modeling and simulation of propylene polymerization in nonideal loop reactors, AIChE Journal, 49(10), 2642-2654. ##
[5]. de Lucca, E. A., Filho, R. M., Melo, P. A., & Pinto, J. C. (2008). Modeling and simulation of liquid phase propylene polymerizations in industrial loop reactors. In Macromolecular symposia, 271(1), 8-14, Weinheim: Wiley‐Vch Verlagو doi.org/10.1002/masy.200851102. ##
[6]. Luo, Z. H., Su, P. L., Shi, D. P., & Zheng, Z. W. (2009). Steady-state and dynamic modeling of commercial bulk polypropylene process of Hypol technology, Chemical Engineering Journal, 149(1-3), 370-382. ##
[7]. Lee, J. C., Kofi, O. S., Kim, S. H., Hong, S. U., & Oh, M. (2015). Polypropylene production simulation with cape-open interfacing of pro/ii and gproms, Journal of Engineering Science and Technology, 2, 48-61. ##
[8]. Lee, J. C., Kofi, O. S., Kim, S. H., Hong, S. U., & Oh, M. (2015). Polypropylene production simulation with cape-open interfacing of pro/ii and gproms, Journal of Engineering Science and Technology, 10, 48-61. ##
[9]. Khare, N. P., Lucas, B., Seavey, K. C., Liu, Y. A., Sirohi, A., Ramanathan, S., & Chen, C. C. (2004). Steady-state and dynamic modeling of gas-phase polypropylene processes using stirred-bed reactors, Industrial & Engineering Chemistry Research, 43(4), 884-900. ##
[10]. Çengel, Y. A., & Cimbala, J. M. (2006). Introduction to computational fluid dynamics, Fluid Mechanics: Fundamentals and Applications. ##
[11]. Zhi-qing, W. (1982). Study on correction coefficients of liminar and turbulent entrance region effect in round pipe, Applied Mathematics and Mechanics, 3(3): 433-446. ##
[12]. Floyd, S., Hutchinson, R. A., & Ray, W. H. (1986). Polymerization of olefins through heterogeneous catalysis—V. Gas‐liquid mass transfer limitations in liquid slurry reactors, Journal of Applied Polymer Science, 32(6), 5451-5479. ##
[13]. Zheng, Z. W., Shi, D. P., Su, P. L., Luo, Z. H., & Li, X. J. (2011). Steady-state and dynamic modeling of the basell multireactor olefin polymerization process, Industrial & Engineering Chemistry Research, 50(1), 322-331, doi: 10.1021/ie101699b. ##
[14]. Choi, K. Y., & Ray, W. H. (1985). Polymerization of olefins through heterogeneous catalysis. II. Kinetics of gas phase propylene polymerization with Ziegler–Natta catalysts, Journal of Applied Polymer Science, 30(3), 1065-1081, doi: 10.1002/app.1985.070300315. ##
[15]. Liravi, M., Mohammadi, M., Haghshenasfard, M., Khaz’ali, A. R., Sarvi, R., & Ezoji, A. A. (2021). Simulation and Analysis of Dew Point Regulation Unit Process of a Gas Refinery and Use of Propane Cooling Cycle in Order to Achieve Optimal Operation Conditions, Journal of Petroleum Research, 31(1400-1), 3-19, doi: 10.22078/pr.2020.4197.2910. ##
[16].Behroozsarand, A., Soltanalizadeh Maleki, H., & Hosseini-Dastgerdi, Z. (2023). Optimization of an Integrated Natural gas to Polypropylene Plant by Using Sinus-Cosine Algorithm, Journal of Petroleum Science and Technology, doi:10.22078/JPST.2023.5021.1853. ##